dc.contributor.author | A. Sulaiman, Samira | |
dc.date.accessioned | 2020-07-19T20:24:50Z | |
dc.date.available | 2020-07-19T20:24:50Z | |
dc.date.issued | 2020-06-15 | |
dc.identifier.issn | 2519-674X | |
dc.identifier.uri | http://dspace.zu.edu.ly/handle/1/602 | |
dc.description.abstract | Chemin[1], proved the inequality of Bernstein for any tempered distribution u. In this paper, we will extend its proof for a bloc dyadic ∆ ̇_q u and S_q u. We will use the Fourier transform and apply the Yong inequality for convolution. In addition, we will use the techniques of analysis in frequency space | en |
dc.language.iso | en | en |
dc.subject | Dyadic decomposition, Littlewood-Paley operators, radial functions, space of Schwartz, Bernstein inequality | en |
dc.title | On the Bernstein inequality | en |
dc.type | Article | en |