On the Bernstein inequality

Samira Alamin Sulaiman ${ }^{(*)}$
Dept. of mathematics, Faculty of sciences, University of Zawia

Abstract

Chemin [1], proved the inequality of Bernstein for any tempered distribution u. In this paper, we will extend its proof for a bloc dyadic $\dot{\Delta}_{q} u$ and $S_{q} u$. We will use the Fourier transform and apply the Yong inequality for convolution. In addition, we will use the techniques of analysis in frequency space.

Keywords: Dyadic decomposition, Littlewood-Paley operators, radial functions, space of Schwartz, Bernstein inequality.

[^0]
1. Introduction

In this section, we recall the Young inequality, we define the dyadic decomposition of the full space \mathbb{R}^{d} and recall the LittlewoodPaley operators.

The following inequality is well-known, can be found for example in [3].

Lemma 1.1: (Young convolution inequality)
For any two functions f and g, such that $f \in L^{c}$ and $g \in L^{a}$ and any constants $(a, b, c) \in[1, \infty]^{3}$, such that

$$
1+\frac{1}{b}=\frac{1}{c}+\frac{1}{a} .
$$

Then we have $f * g \in L^{b}$ and

$$
\|f * g\|_{L^{b}} \leq C\|f\|_{L^{c}}\|g\|_{L^{a}}, \quad C \text { is a constant. }
$$

We can conclude immediate the following result, we refer to [1], [2].

Lemma 1.2 :

For every function $f \in \mathcal{S}$, where \mathcal{S} is the space of Schwartz such that $f \in L^{1} \cap L^{\infty}$ and for every $1<c<\infty$, then we have $f \in L^{c}$ and $\left(1+|\cdot|^{2}\right)^{d} \partial^{\alpha} f$ is bounded.

We recall the Littlewood-Paley operators see [1], [4] and [6] for more details.

Definition 1.3:

There exist two non-negative radial functions $\chi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ and $\varphi \in \mathcal{D}\left(\mathbb{R}^{d} /\{0\}\right)$ such that

$$
\chi(\xi)+\sum_{q \geq 0} \varphi\left(2^{-q} \xi\right)=1, \quad \forall \xi \in \mathbb{R}^{d},
$$

$$
\begin{gathered}
\sum_{q \in \mathbb{Z}} \varphi\left(2^{-q} \xi\right)=1, \quad \forall \xi \in \mathbb{R}^{d} /\{0\} \\
|p-q| \geq 2 \Rightarrow \operatorname{supp} \varphi\left(2^{-p} .\right) \cap \operatorname{supp} \varphi\left(2^{-q} .\right)=\phi, \\
q \geq 1 \Rightarrow \operatorname{supp} \chi \cap \operatorname{upp} \varphi\left(2^{-q} .\right)=\phi .
\end{gathered}
$$

Let $h=\mathcal{F}^{-1} \varphi$ and $\bar{h}=\mathcal{F}^{-1} \chi$, the frequency localization inhomogeneous operators Δ_{q} and S_{q} are defined by

$$
\begin{aligned}
& \Delta_{q} f=\varphi\left(2^{-q} D\right) f, \quad S_{q} f=\chi\left(2^{-q} D\right) f \\
& \Delta_{-1} f=S_{0} f, \quad \Delta_{q} f=0 \quad \text { for } q \leq-2
\end{aligned}
$$

And the frequency localization homogeneous operators $\dot{\Delta}_{q}$ and \dot{S}_{q} are defined by

$$
\dot{\Delta}_{q} f=\varphi\left(2^{-q} D\right) f, \quad \dot{S}_{q} f=\chi\left(2^{-q} D\right) f
$$

We notice that $\Delta_{q}=\dot{\Delta}_{q}, \forall q \in \mathbb{N}$ and S_{q} coincides with \dot{S}_{q} on tempered distributions modulo polynomials.

From the definition of the operator Δ_{q}, we can write ([3], [5]),

$$
u=\sum_{q} \Delta_{q} u
$$

2. Bernstein inequality

In this section, we will prove a Bernstein inequality for a tempered distribution u with a bloc dyadic $\dot{\Delta}_{q}$ and S_{q} which is the main result of this paper.

Lemma 2.1: (Bernstein Lemma) There exists a constant $C>0$ such that for every $q \in \mathbb{Z}, k \in \mathbb{N}$ and for every tempered distribution u we have

$$
\begin{equation*}
\sup _{|\alpha|=k}\left\|\partial^{\alpha} S_{q} u\right\|_{L^{b}} \leq C^{k} 2^{q\left(k+d\left(\frac{1}{a}-\frac{1}{b}\right)\right)}\left\|S_{q} u\right\|_{L^{a}} \quad, b \geq a \geq 1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
C^{-k} 2^{q k}\left\|\dot{\Delta}_{q} u\right\|_{L^{a}} \leq \sup _{|\alpha|=k}\left\|\partial^{\alpha} \dot{\Delta}_{q} u\right\|_{L^{a}} \leq C^{k} 2^{q k}\left\|\dot{\Delta}_{q} u\right\|_{L^{a}} \ldots \ldots(\tag{2}
\end{equation*}
$$

Proof:

(1) Let $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ Such that $\varphi=1$ in the neighborhood of the ball of center 0 and radius r_{1}. Let also $\tilde{\varphi} \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ Such that $\tilde{\varphi} \equiv 1$ in the neighborhood of φ, then we have

$$
S_{q} u=\tilde{\varphi}\left(2^{-q} D\right) S_{q} u .
$$

It is clear that

$$
S_{q} u=\mathcal{F}^{-1}\left(\widetilde{\varphi}\left(2^{-q} D\right) \mathcal{F}\left(S_{q} u\right)\right)=\mathcal{F}^{-1}\left(\widetilde{\varphi}\left(2^{-q} D\right)\right) * S_{q} u .
$$

Using the Fourier transform with a simple calculation, we get

$$
\begin{aligned}
\mathcal{F}^{-1}\left(\tilde{\varphi}\left(2^{-q} D\right)\right)=\int \tilde{\varphi}\left(2^{-q} \xi\right) e^{i x \xi} d \xi & =2^{q d} \int \tilde{\varphi}(\xi) e^{i x 2^{q} \xi} d \xi \\
& =2^{q d} \mathcal{F}^{-1}(\tilde{\varphi}(\xi)):=2^{q d} h\left(2^{q} x\right) .
\end{aligned}
$$

This gives that

$$
S_{q} u=2^{q d} h\left(2^{q} \cdot\right) * S_{q} u .
$$

Therefore

$$
\begin{equation*}
\partial^{\alpha} S_{q} u=2^{q(d+|\alpha|)} \partial^{\alpha} h\left(2^{q} \cdot\right) * S_{q} u \ldots \ldots \tag{3}
\end{equation*}
$$

Taking the L^{b} norm of (3) and applying Young inequality for convolution (Lemma 1.1), we find with $\left(\frac{1}{b}+1=\frac{1}{c}+\frac{1}{a}\right)$, that

$$
\begin{aligned}
&\left\|\partial^{\alpha} S_{q} u\right\|_{L^{b}} \leq 2^{q(d+|\alpha|)}\left\|\partial^{\alpha} h\left(2^{q} \cdot\right)\right\|_{L^{c}}\left\|S_{q} u\right\|_{L^{a}} \\
& \leq 2^{q(d+|\alpha|)} 2^{-q \frac{d}{c}}\left\|\partial^{\alpha} h\right\|_{L^{c}}\left\|S_{q} u\right\|_{L^{a}} \\
& \leq 2^{q\left(|\alpha|+d\left(1-\frac{1}{c}\right)\right)}\left\|\partial^{\alpha} h\right\|_{L^{c}}\left\|S_{q} u\right\|_{L^{a}} \\
& \leq 2^{q\left(|\alpha|+a\left(\frac{1}{a}-\frac{1}{b}\right)\right)}\left\|\partial^{\alpha} h\right\|_{L^{c}}\left\|S_{q} u\right\|_{L^{a}} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\sup _{|\alpha|=k}\left\|\partial^{\alpha} S_{q} u\right\|_{L^{b}} \leq 2^{q\left(k+d\left(\frac{1}{a}-\frac{1}{b}\right)\right)}\left\|\partial^{\alpha} h\right\|_{L^{c}}\left\|S_{q} u\right\|_{L^{a}} \ldots \ldots \tag{4}
\end{equation*}
$$

It is enough to prove that $\left\|\partial^{\alpha} h\right\|_{L^{c}} \leq C^{k}$. For this purpose, we use Lemma 1.2, then we have

$$
\begin{equation*}
\left\|\partial^{\alpha} h\right\|_{L^{c}} \leq\left\|\partial^{\alpha} h\right\|_{L^{1}}+\left\|\partial^{\alpha} h\right\|_{L^{\infty}} \tag{5}
\end{equation*}
$$

Now since $h=\mathcal{F}^{-1} \varphi$ and $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{d}\right) \hookrightarrow \mathcal{S}$, where \mathcal{S} is the space of Schwartz, then we have $h \in \mathcal{S}$, this gives by using Lemma 1.2, that h is bounded and $\left(1+|\cdot|^{2}\right)^{d} \partial^{\alpha} h$ is also bounded.

$$
\begin{array}{r}
\left\|\partial^{\alpha} h\right\|_{L^{1}}=\int\left|\partial^{\alpha} h\right| \leq \int\left(1+|\cdot|^{2}\right)^{-d}\left(1+|\cdot|^{2}\right)^{d}\left|\partial^{\alpha} h\right| \\
\leq\left\|\left(1+|\cdot|^{2}\right)^{-d}\right\|_{L^{1}} \|(1+
\end{array}
$$

$\left.|\cdot|^{2}\right)^{d} \partial^{\alpha} h \|_{L^{\infty}}$

$$
\leq C\left\|\left(1+|\cdot|^{2}\right)^{d} \partial^{\alpha} h\right\|_{L^{\infty}} \ldots \ldots \text { (6) }
$$

Also

$$
\begin{align*}
\left\|\partial^{\alpha} h\right\|_{L^{\infty}}=\sup _{x}\left|\partial^{\alpha} h(x)\right| & \leq \sup _{x}\left(1+|\cdot|^{2}\right)^{d}\left|\partial^{\alpha} h\right| \\
& \leq C\left\|\left(1+|\cdot|^{2}\right)^{d} \partial^{\alpha} h\right\|_{L^{\infty}} . \tag{7}
\end{align*}
$$

Putting together (6) and (7) in (5), we get

$$
\left\|\partial^{\alpha} h\right\|_{L^{c}} \leq C^{2}\left\|\left(1+|\cdot|^{2}\right)^{d} \partial^{\alpha} h\right\|_{L^{\infty}} \leq C^{k}, \quad k \in \mathbb{N} .
$$

This gives in (4), that

$$
\sup _{|\alpha|=k}\left\|\partial^{\alpha} S_{q} u\right\|_{L^{b}} \leq C^{k} 2^{q\left(k+d\left(\frac{1}{a}-\frac{1}{b}\right)\right)}\left\|S_{q} u\right\|_{L^{a}}
$$

This proves (1) of Lemma 2.1.
\qquad

Proof of (2) of Lemma 2.1:

Let $\tilde{\varphi} \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ Such that $\tilde{\varphi}=1$ in the neighborhood of φ. Then we have

$$
\dot{\Delta}_{q} u=\tilde{\varphi}\left(2^{-q} D\right) \dot{\Delta}_{q} u .
$$

It is clear that

$$
\mathcal{F}\left(\dot{\Delta}_{q} u\right)=\tilde{\varphi}\left(2^{-q} \xi\right) \mathcal{F}\left(\dot{\Delta}_{q} u\right),
$$

and thus

$$
\begin{equation*}
\dot{\Delta}_{q} u(x)=\mathcal{F}^{-1}\left(\tilde{\varphi}\left(2^{-q} \xi\right) \mathcal{F}\left(\dot{\Delta}_{q} u\right)(\xi)\right) \ldots \ldots \tag{8}
\end{equation*}
$$

Where,

$$
\tilde{\varphi}\left(2^{-q} \xi\right)=\sum_{|\alpha|=k}(i \xi)^{\alpha}|\xi|^{-2 k}(-i \xi)^{\alpha} \tilde{\varphi}\left(2^{-q} \xi\right)
$$

Putting this last inequality in (8), we get

$$
\begin{aligned}
\dot{\Delta}_{q} u(x)= & \sum_{|\alpha|=k} \mathcal{F}^{-1}\left((i \xi)^{\alpha}|\xi|^{-2 k}(-i \xi)^{\alpha} \tilde{\varphi}\left(2^{-q} \xi\right) \mathcal{F}\left(\dot{\Delta}_{q} u\right)(\xi)\right) \\
& =\sum_{|\alpha|=k} \mathcal{F}^{-1}\left((i \xi)^{\alpha}|\xi|^{-2 k} \tilde{\varphi}\left(2^{-q} \xi\right) \mathcal{F}\left(\partial^{\alpha} \dot{\Delta}_{q} u\right)(\xi)\right) \\
= & \sum_{|\alpha|=k} \mathcal{F}^{-1}\left((i \xi)^{\alpha}|\xi|^{-2 k} \tilde{\varphi}\left(2^{-q} \xi\right)\right) * \partial^{\alpha} \dot{\Delta}_{q} u(x),
\end{aligned}
$$

where,

$$
\begin{gathered}
\mathcal{F}^{-1}\left((i \xi)^{\alpha}|\xi|^{-2 k} \tilde{\varphi}\left(2^{-q} \xi\right)\right)=\int \frac{(i \xi)^{\alpha}}{|\xi|^{2 k}} \tilde{\varphi}\left(2^{-q} \xi\right) e^{i x \xi} d \xi \\
=\int \frac{\left(i 2^{q} \xi\right)^{\alpha}}{\left|2^{q} \xi\right|^{2 k}} \tilde{\varphi}(\xi) e^{i x 2^{q d} \xi} d \xi \\
=2^{q(d+|\alpha|-2 k)} \int \frac{(i \xi)^{\alpha}}{|\xi|^{2 k}} \tilde{\varphi}(\xi) e^{i x 2^{q d} \xi} d \xi=2^{q(d+|\alpha|-2 k)} h_{k}\left(2^{q} x\right),
\end{gathered}
$$

where

$$
h_{k}\left(2^{q} x\right)=\int \frac{(i \xi)^{\alpha}}{|\xi|^{2 k}} \tilde{\varphi}(\xi) e^{i x 2^{q d} \xi} d \xi
$$

Then

$$
\dot{\Delta}_{q} u(x)=2^{q(d+|\alpha|-2 k)} h_{k}\left(2^{q} \cdot\right) * \partial^{\alpha} \dot{\Delta}_{q} u .
$$

This gives by Young inequality for convolution, that

$$
\left\|\dot{\Delta}_{q} u\right\|_{L^{a}} \leq 2^{q(d+|\alpha|-2 k)}\left\|h_{k}\left(2^{q} \cdot\right)\right\|_{L^{1}}\left\|\partial^{\alpha} \dot{\Delta}_{q} u\right\|_{L^{a}}
$$

We have

$$
\left.\| h_{k}\left(2^{q}\right)\right)\left\|_{L^{1}}=\int\left|h_{k}\left(2^{q} x\right)\right| d x=\int\left|h_{k}(y)\right| 2^{-q d} d y=2^{-q d}\right\| h_{k} \|_{L^{1}}
$$

We recall that, $h=\mathcal{F}^{-1} \varphi$ and $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{d}\right) \hookrightarrow \mathcal{S}$, where \mathcal{S} is the space of Schwartz, then we have $h \in \mathcal{S}$, this gives by using Lemma 1.2, that h is bounded and $\left(1+|\cdot|^{2}\right)^{d} \partial^{\alpha} h$ is also bounded. Therefore

$$
\|h\|_{L^{1}} \leq C^{k}
$$

Thus

$$
\left\|\dot{\Delta}_{q} u\right\|_{L^{a}} \leq 2^{q(|\alpha|-2 k)} C^{k}\left\|\partial^{\alpha} \dot{\Delta}_{q} u\right\|_{L^{a}} .
$$

Thus

$$
\sup _{|\alpha|=k}\left\|\partial^{\dot{\alpha}} \Delta_{q} u\right\|_{L^{a}} \geq C^{-k} 2^{q k}\left\|\dot{\Delta}_{q} u\right\|_{L^{a}} .
$$

This is the desired result.

3. Conclusion

Bernstein inequality has been proved by J-Y-Chemin for any tempered distribution u. In this paper, we proved the inequality for a bloc dyadic $\dot{\Delta}_{q} u$ and $S_{q} u$. Our results show a strong support for the effect of mathematics and physical applications, for example, in the non-linear Navier-Stokes and Euler Boussinesq equations and the quasi-geostrophic equation.

References:

[1] J.-Y.Chemin. (1998). Perfect incompressible fluids. Oxford University Press.
[2] J.-Y.Chemin. (1999). Théorème d'unicité pour le système de NavierStokes tridimensionnel. J. Anal. Math. , 77 no. 5, 27-50.
[3] H. Bahouri, J-Y Chemin, and R. Danchin. (2011). Fourier analysis and nonlinear partial differential equations, volume 343. Springer Science \& Business Media.
[4] Q. Chen, C. Miao and Z. Zhang. (2007). A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation. Comm. Math. Phys. , 271. No. 3, 821-838,.
[5] R Danchin. (2012). Local theory in critical spaces for compressible viscous and Heat conductive gases.
Communications in Partial Differential Equations, 26:7-8, 1183-1233.
[6] P. G. Lemarié (2002). Recent developments in the Navier-Stokes problem, CRC Press.

[^0]: (*) Email: samira.sulaiman@zu.edu.ly

