Show simple item record

dc.contributor.authorDaoub, Hamza
dc.date.accessioned2022-02-19T07:35:38Z
dc.date.available2022-02-19T07:35:38Z
dc.date.issued2021-12-31
dc.identifier.issn2519-674X
dc.identifier.urihttp://dspace.zu.edu.ly/xmlui/handle/1/1718
dc.description.abstractIf n<∞ is a positive integer, R=Z_n is the ring of integers modulo n, with the assumption that on one hand G(Z_n) is a directed graph of the quadratic polynomial, x^2 +ax+b=0 mod(n), presented by the mapping φ_1:Z_n×Z_n→ Z_n×Z_n, defined as φ_1 (v_1,v_2 )=(v_1+v_2,v_1 v_2). On the other hand, Γ(Z_n) is a directed graph of the quadratic congruence x^2+c=0 mod(n), presented by the mapping φ_2:Z_n→ Z_n given by φ_2 (v)=v^2. We investigate the relationship between G and Γ, supporting the study with computer computations using Wolfram Mathematica software.en_US
dc.language.isootheren_US
dc.publisherمركز البحوث والاستشارات العلميةen_US
dc.subjectDigraphs, Commutative Ring, Cycle Length, Quadratic Congruence, Quadratic Polynomialen_US
dc.titleOn Digraphs Associated to Two Quadratic Forms Modulo nen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record