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Abstract

Chemin [1], proved the inequality of Bernstein for any tempered
distribution u. In this paper, we will extend its proof for a bloc dyadic
Aqu and S,u. We will use the Fourier transform and apply the Yong

inequality for convolution. In addition, we will use the techniques of
analysis in frequency space.
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On the Bernstein inequality

1. Introduction

In this section, we recall the Young inequality, we define the
dyadic decomposition of the full space R? and recall the Littlewood-
Paley operators.

The following inequality is well-known, can be found for example
in [3].

Lemma 1.1: (Young convolution inequality)
For any two functions f and g, such that f € L° and g € L% and
any constants (a, b, ¢) € [1, ]2, such that
1 1 1

1+—=—-—+-
b ¢ a

Then we have f * g € L? and
If *gllp < Clifllellgllza, Cis aconstant.
We can conclude immediate the following result, we refer to

[1], [2].

Lemmal.2:

For every function f € § , where S is the space of Schwartz such
that f € L' n L* and for every 1 < ¢ < oo , then we have f € L¢ and
(1 + |-|*)%0%f is bounded.

We recall the Littlewood-Paley operators see [1],[4] and [6] for
more details.

Definition 1.3:
There exist two non-negative radial functions y € D(R%) and
@ € D(R4/{0}) such that

X +Zg200(27%) =1, VEERY,
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D o279 =1, vEe R/},

qEZ
lp —ql = 2= supp p(277.) N supp (277.) = ¢,
q=1=supp yn upp (274.) = ¢.
Let h=F 19 and h=F 'y , the frequency localization
inhomogeneous operators A, and S, are defined by
Aqf = @(279D)f, Sqf = x(2791D)f
A_if =Sof, Agf =0 forq<-2
And the frequency localization homogeneous operators Aq and S'q
are defined by
Aof =9@27ID)f,  Sof = x(271D)f
We notice that A,=A,, Vg €N and S, coincides with S, on
tempered distributions modulo polynomials.

From the definition of the operator A, , we can write ([3], [5]),
u= z Aqu
q

2. Bernstein inequality

In this section, we will prove a Bernstein inequality for a tempered
distribution u with a bloc dyadic Aq and S, which is the main result of
this paper.

Lemma 2.1: (Bernstein Lemma) There exists a constant C > 0
such that for every q € Z, k € N and for every tempered distribution u we

have

q(k+d(1—1)>
suppai—iel|0%Squll , < €2\ PIsul| . bz az1....(D)
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CH*2K||Aqu| o < supjaiok]|0%Bqul] . < C¥2%||Agul] 4 ... (2)
Proof:
(1) Let @ € G (R%) Such that ¢ = 1 in the neighborhood of
the ball of center 0 and radius r;. Let also @ € C5°(R%) Such that
@ = 1 in the neighborhood of ¢, then we have
Squ = @(279D)S,u.
It is clear that
Squ=F H@P2ID)F(S,u)) = FH(@(279D)) * S,u.
Using the Fourier transform with a simple calculation, we get

FR@@ D)) = | p1etds = 200 [ p(ea
= 299FH(@(§)) = 29%h(2x),
This gives that
Squ = 29%h(29 ) x S,u.
Therefore
0%S,u = 29@HaDgap (29 ) x Spu ... ... (3)
Taking the L? norm of (3) and applying Young inequality for
convolution (Lemma 1.1), we find with (% +1= % + %) that

[0%Squl| , < 29€@*1eDG=R (29 Y| e]|Squ| o

< 2q<d+|a|>2—Q%||aah||Lc||Squ||La

_1
< 2Q<|a|+d(1 c)) “aah“LC”Squ”La

11
< 2¢I<|0£I+d(a b)) ”aah”LC“Squ”La-
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Therefore

k+a(i-L )
Suplalzk”aasqu”Lb < 2q< (a b) ”aah”LC”SqunLa ...... (4)

It is enough to prove that |[0%h||,c < C¥. For this purpose, we use
Lemma 1.2, then we have
10%Rlle < 10%RllLx + [[0All ... (5)
Now since h = F~1¢p and ¢ € C°(R%) & §, where S is the space
of Schwartz, then we have h € §, this gives by using Lemma 1.2, that h
is bounded and (1 + ||?)98%h is also bounded.

l0%R|l,» = Jlaahl < J(l + 127+ [-[3)?0%h]
< la+1>77 Ll +
.12 ad
[1%)40%R]|
< Cl|( + [15*0%R| o - - (6)
Also
10%hll = = sup,|0%h(x)| < sup, (1 + |-[*)?|0%h|
< Cl|(@ + [1)%%R|| o - (7)
Putting together (6) and (7) in (5), we get
l0%R|| < C?|(1 + |-|2)“60‘h||Loo < Ck, k € N.

This gives in (4), that
q<k+d 11 )
supae0%aul < 0 2V @D g )

This proves (1) of Lemma 2.1.
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Proof of (2) of Lemma 2.1:
Let @ € C°(R%) Such that ¢ = 1 in the neighborhood of ¢. Then
we have
Aqu = gb(Z‘qD)Aqu.
It is clear that
F(Au) = p271)F (Au),

and thus

Aqu(x) = F1 (@(Z‘QE)T(Aqu)(E)) ...... (8)
Where,

PRI = ) GO G

|a|=k
Putting this last inequality in (8), we get

bt = ) F (GO GRIOF (Bqu) ©)

|a|=k
= D= T (OEI 2 G2 1)F(9%Aqu) (©) )
= > FHEI G D) * 9%hqul)

|lax|=k
where,
F-1 coNa| | -2k 5 (9—q — (ig)a~ —q ix¢
(@I17*0@7)) = | 175z 2 9e 0 de
(izqf)a., ix2dd
= Wﬂf)e 208de

_ @ _
— 2q(d+|a| 2k) |f|2k (P(f)elxzqdfdf — 2q(d+|a| Zk)hk(qu),
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where
(i)«

HE P(E)e*> " dg.

he (29x) =

Then
Aqu(x) = 29@¥el=2Bp, (24.) « 9%A ju.
This gives by Young inequality for convolution, that
[Aqu|| o < 29@H==20 10, (29 )| 2 ][0 Agu| o
We have

g (29 )2 = flhk(qu)ldx = flhk(y)IZ“’ddy = 279 |l 2.

We recall that, h = F ¢ and ¢ € C*(R%) © S, where S is the
space of Schwartz, then we have h € § , this gives by using Lemma 1.2,
that & is bounded and (1 + |-|?)¢9%h is also bounded. Therefore

IRl < CK.
Thus
lAqul,. < 290929 c¥ |0 Agu] .
Thus

subjai=k[|08qul| o 2 CT¥ 29[| Agul] o

This is the desired result.

3. Conclusion

Bernstein inequality has been proved by J-Y-Chemin for any
tempered distribution w. In this paper, we proved the inequality for a bloc
dyadic Aqu and S,u. Our results show a strong support for the effect of
mathematics and physical applications, for example, in the non-linear
Navier-Stokes and Euler Boussinesq equations and the quasi-geostrophic
equation.
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