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 المـلـخـص:

للزمرة المنتهية  𝐺(𝐴)زمرة منتهية، الرسم البياني الغير موجه  𝐴بفرض أن 

𝐴  عرف على أنه البيان البسيط الغير موجه الذي مجموعة حوافه هي𝐺(𝐴)  و

,𝑢  ينــــين المختلفـــالرأس 𝑣 يكونان مرتبطين إذا وفقط إذا كان𝑢2 ≠ 𝑣2.  في هذا

𝐴البحث لأي زمرة منتهية  = (ℤ𝑛, . سوف نقوم بدراسة : درجة الرؤوس، عدد  (

لرسم ، حجم الرسم البيانيقطر ااكز، ، إختلاف المر𝐺(𝐴)الحواف للرسم البياني 

إثبات إلى ذلك،  بالإضافة ، الأعداد اللونية للحواف، ، الأعداد اللونية للرؤوسالبياني

 وجود الدوائر الهاملتينونية والدوائر الأولريانية.
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Abstract: Let 𝐴 be a finite abelian group, An undirected graph 

𝐺(𝐴) of a finite group 𝐴 is introduced and defined as an undirected 

simple graph whose vertex set is 𝑉(G) and two distinct vertices 𝑢 

and 𝑣 are adjacent if and only if 𝑢2 ≠ 𝑣2. In this paper, for a finite 

group 𝐴 = (ℤ𝑛, . ), the degrees of vertices, the number of edges 

of 𝐺(𝐴), the eccentricity, diameter, girth, chromatic number are 

computed. Furthermore, Hamiltonian and Eulerian cycles of 𝐺 are 

proposed.  
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1. Introduction 

The study of graphs of abelian groups was introduced and 

widely researched since many group properties can be represented 

by graphs. In particular, the study of graphs of the group ℤ𝑛 of 

integers modulo n reveals interesting relations between group 

theory, number theory and graph theory; algebraic tools help to 

understand graphs properties and vise versa. Given an algebraic 

structure 𝐴, there are different formulations to associate a directed 

or undirected graph to 𝐴, and the algebraic properties of 𝐴 are 

studied in terms of properties of associated graphs. 

There are many papers on assigning a graph to a group and 

algebraic properties of the group by using the associated graph; for 

instance, see [1–4]. In recent years, there has been growing interest 

in the graphs associated with the finite group ℤ𝑛 of integers 

modulo 𝑛, see [5,6]. The idea of studying the interplay between 

group-theoretic properties of a group 𝐴 and graph-theoretic 

properties of a graph defined after it is quite recent. 

Given a abelian group ℤ𝑛, we identify an undirected graph 

𝐺(ℤ𝑛) of a finite abelian group ℤ𝑛 as an undirected graph whose 

vertex set is 𝑉(𝐺) = ℤ𝑛 and two distinct vertices 𝑢 and 𝑣 are 

adjacent if and only if 𝑢2 ≠ 𝑣2. By this adjacency, all elements of 

a group are represented in a connected graph 𝐺 = (𝑉, 𝐸), where 𝑉 

is the set of all vertices and 𝐸 is the set of all edges. 

Given a graph 𝐺 = (𝑉, 𝐸), we study a graph degree of a 

vertex 𝑢, denoted by 𝑑𝑒𝑔(𝑢). Also, we are interested in the 

eccentricity of a graph vertex 𝑣, denoted by 𝑒𝑐𝑐(𝑣), the diameter, 

denoted by 𝑑𝑖𝑎𝑚(𝐺), and the girth of 𝐺, denoted by 𝑔r(𝐺). A 
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Hamiltonian cycle and Hamiltonian graph are also in our 

concentration, and of course, by using graph coloring we have 

found the vertex chromatic number 𝜒 (𝐺) and the edge chromatic 

number 𝜒′(𝐺) as well. 

2. Preliminary 

In this section we review some primary concepts from graph 

theory, and we refer to [7, 8] for the notions are used.  

Two vertices are said to be adjacent vertices if there is an edge 

(arc) connecting them.  

A simple graph is a graph that does not have more than one 

edge between any two vertices and no edge starts and ends at the 

same vertex. In other words, a simple graph is a graph without 

loops and multiple edges.  

Adjacent edges are edges that share a common vertex. 

The degree of a vertex is the number of edges incident with that 

vertex. A graph in which every vertex has the same degree is called 

a regular graph.  

A complete graph is a simple undirected graph in which every 

pair of distinct vertices is connected by a unique edge. 

 A path is a sequence of vertices with the property that each 

vertex in the sequence is adjacent to the vertex next to it. A path 

that does not repeat vertices is called a simple path. An Euler 

path is a path that travels through all edges of a connected graph. 

An Euler circuit is a circuit that visits all edges of a connected 

graph. An Eulerian cycle in an undirected graph is an Eulerian 

circuit that uses each edge exactly once. 
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A circuit is a path that begins and ends at the same vertex. A 

circuit that doesn't repeat vertices is called a cycle.  

A graph is said to be connected if any two of its vertices are 

joined by a path. A graph that is not connected is a disconnected 

graph.  

The girth of an undirected graph is the length of the shortest 

cycle contained in the graph. If the graph does not contain any 

cycles, its girth is defined to be infinity. 

The eccentricity of a graph vertex 𝑣 in a connected graph 𝐺, 

denoted by 𝑒𝑐𝑐(𝑣), is the maximum graph distance between 𝑣 and 

any other vertex 𝑢 of 𝐺. For a disconnected graph, all vertices are 

defined to have infinite eccentricity. 

Graph center is the set of vertices with minimum eccentricity 

in the graph 𝐺. 

The diameter of a graph is the maximum eccentricity of any 

vertex in the graph. That is, it is the greatest distance between any 

pair of vertices. To find the diameter of a graph, first, find the 

shortest path between each pair of vertices. The greatest length of 

any of these paths is the diameter of the graph. 

The radius of a graph is the minimum graph eccentricity of 

any graph vertex in a graph. A disconnected graph, therefore, has 

an infinite radius. 

Graph coloring is a special case of graph labeling; it is an 

assignment of labels traditionally called "colors" to elements of 

a graph subject to certain constraints. In its simplest form, it is a 

way of coloring the vertices of a graph such that no two adjacent 

vertices are of the same color; this is called a vertex coloring. 
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An edge coloring or line coloring of a graph G is an assignment 

of colors to its edges (lines) so that no two adjacent edges (lines) 

are assigned the same color. An 𝑛-edge coloring of 𝐺 is an edge 

coloring of 𝐺 which uses exactly n colors.  

The chromatic number, 𝜒(𝐺), of a graph 𝐺 is the smallest 

number of colors for 𝑉(𝐺) so that adjacent vertices are colored 

differently. 

A clique is a subset of vertices of an undirected graph such that 

every two distinct vertices in the clique are adjacent. That is, a 

clique of a graph 𝐺 is an induced subgraph of 𝐺 that is complete. 

Moreover, the clique number 𝜔(𝐺) of a graph 𝐺 is the number of 

vertices in a maximum clique in 𝐺.  

3. Main Results 

In this section, we investigate a graph degree of a vertex 𝑢, a 

diameter, the girth, a Hamiltonian cycle and Hamiltonian graph, 

chromatic number 𝜒 (𝐺) and the edge chromatic number 𝜒′(𝐺) of 

the graph 𝐺. 

One observes for any prime integer 𝑛 < ∞, 𝐺(ℤ𝑛) doesn’t 

contain loops, which means that it is a simple graph.  

Suppose that (ℤ𝑛, ∙) is a group where 𝑛 is a prime, then every two 

vertices 𝑢 = 𝑖, 𝑣 = 𝑛 − 𝑖 are disjoint, where 𝑖 = 1,2,3, … , 𝑛 − 1. 

For instance, in the Figure 4, the vertices 𝑢 = 6, 𝑣 = 7 are clearly 

disjoint. 

In the next remark, we indicate the adjacency of vertex 𝑣 =

1 for some prime integer 𝑛 ≥ 5. 

Remark 3.1. In the graph 𝐺(ℤ𝑛), if |𝑉(𝐺)| > 4 then the vertex 1 

must be at least adjacent at two vertices, which are: 𝑢 = 2, 𝑣 =

𝑛 − 2.  
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Theorem 3.1. For every prime 𝑛 ≥ 5, and 𝑣 ∈ 𝐺(ℤ𝑛), then 

𝑑𝑒𝑔(𝑣) = 𝑛 − 3. 

Proof: Let 𝑣 be any vertex in 𝑉(𝐺) then 𝑣 is adjacent to all vertices 

in 𝑉(𝐺) except the vertex 𝑛– 𝑣. Since |𝑉(𝐺)| = 𝑛 − 1, also 𝑣 is 

not adjacent to itself. Thus, the number of vertices that are adjacent 

to 𝑣 are 𝑛 − 1 − 2 = 𝑛 − 3. 

Theorem 3.2. The eccentricity of a vertex 𝒗 in 𝑮(ℤ𝒏) is 2. 

Proof: Let 𝑣 be an element in 𝑉(𝐺) such that 𝑣 ≠ 𝑛 − 1. Since 

𝑣, 𝑛 − 𝑣 are disjoint (by definition) that means 𝑒𝑐𝑐(𝐺) can not be 

1. However, the vertex 𝑣 + 1 is adjacent to both 𝑣 and 𝑛 − 𝑣 (easy 

to prove), which is the maximum distance between 𝑣 and any other 

vertex 𝑢 in 𝐺(ℤ𝒏). Therefore, the 𝑒𝑐𝑐(𝑣) must be 2. 

Corollary 3.1: The diameter of 𝐺(ℤ𝑛) is 2. 

Proof: By the definition of the diameter and theorem 3.2, the proof 

follows. 

Corollary 3.2: The radius 𝑟(𝐺) of the graph 𝐺(ℤ𝑛) is 2. 

Proof: By the definition of  radius and theorem 3.2, the proof 

follows. 

Proposition 3.1: The graph center of 𝐺(ℤ𝑛) is {1, 2, … , 𝑛 − 1}. 

Proof: Since the eccentricity of all vertices in 𝐺(ℤ𝑛) is 2 

[Corollary 3.2]. Thus, the central set of 𝐺(ℤ𝑛) is all vertices in 

𝑉(𝐺). 

Theorem 3.3. If 𝑛 be any prime number. Then, the girth of the 

graph 𝐺(ℤ𝑛) is 𝑔𝑟(𝐺) = {
∞ 𝑤ℎ𝑒𝑟𝑒 𝑛 < 5
4   𝑤ℎ𝑒𝑟𝑒 𝑛 = 5
3   𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 7

  . 

Proof: 

1- If 𝑛 < 5 then either  𝑛 = 2, that is |𝑉(𝐺)| = 1, so we have 

a single vertex without any edge; or 𝑛 = 3 that is |𝑉(𝐺)| =
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2, so we have only two vertices also without any cycle. 

Therefore, 𝑔𝑟(𝐺) = ∞. 

2- If 𝑛 = 5 then 𝐺(ℤ𝑛) the vertices 1, 4 are not adjacent and 2, 

3 also are not adjacent. Therefore, 𝑒12𝑒24𝑒43𝑒31 makes a 

cycle of length 4. Hence 𝑔𝑟(𝐺) = 4. See Figure 1. 

3- If 𝑛 ≥ 7 then by theorem 3.1 tow vertices 1, 2 are adjacent 

to the vertex 3 and hence we must have (at least) one 

smallest cycle 𝑒13𝑒32𝑒21 which has length 3. Hence, 

𝑔𝑟(𝐺) = 4. 

Theorem 3.4: The graph 𝐺(ℤ𝑛) is Hamiltonian. 

Proof: Let 𝑛 be a prime number such that 𝑛 > 4, and 𝑉(𝐺)  =

{1, 2, … , 𝑛 − 1} . Now if we divided V in to two sets  V1, V2 such 

that: 𝑉1 = {𝑣1 = 1, 𝑣2 = 2, … , 𝑣𝑛−1

2

=
𝑛−1

2
} and 𝑉2 = {𝑣𝑛+1

2

=

𝑛+1

2
, 𝑣𝑛+3

2

=
𝑛+3

2
, 𝑣𝑛+5

2

=
𝑛+5

2
, … , 𝑣𝑛−1 = 𝑛 − 1}. So by theorem 

3.1, all vertices in V1 are adjacent and also all of vertices in V2 are 

adjacent and by the same theorem two vertices 𝑣𝑛−1

2

=
𝑛−1

2
 and 

𝑣𝑛+1

2

=
𝑛+1

2
 are disjoint, since 𝑣𝑛−1

2

=
𝑛−1

2
 is adjacent with 𝑣𝑛−1 =

𝑛 − 1 and 𝑣𝑛+1

2

=
𝑛+1

2
 is adjacent with 𝑣1 = 1 then we can define 

a cycle C as follows: 

𝑣1 = 1 ↔ 𝑣2 = 2 ↔ ⋯ ↔ 𝑣𝑛−1

2

↔ 𝑣𝑛−1 ↔ 𝑣𝑛−2 ↔ 𝑣𝑛−3 ↔

⋯ ↔ 𝑣𝑛+1

2

↔ 𝑣1 = 1, 

which is a Hamilton cycle. Hence, 𝐺(ℤ𝑛) is a Hamiltonian graph. 

Example 3.1: In 𝐺(ℤ11) we can define a cycle 𝐶 as: 

1 ↔ 2 ↔ 3 ↔ 4 ↔ 5 ↔ 10 ↔ 9 ↔ 8 ↔ 7 ↔ 6 ↔ 1 

19



Remark 3.2: In every graph 𝐺(ℤ𝑛), where 𝑛 is a prime number 

with |𝑉(𝐺)| ≥ 5, there is another Hamiltonian undirected cycle: 

1 ↔ 2 ↔ 3 ↔ ⋯ ↔
𝑛 − 1

2
↔

𝑛 + 1

2
+ 1 ↔

𝑛 + 1

2
+ 2

↔ ⋯ ↔ 𝑛 − 1 ↔
𝑛 + 1

2
↔ 1 

Corollary 3.3. The graph 𝐺(ℤ𝑛) is Eulerian. 

Proof: The proof follows from theorem 3.2. 

Given a prime integer 𝑛 < ∞, the subsets 𝑉1 and 𝑉2which 

are defined in the proof of the theorem 3.4 and satisfy 𝑉 = 𝑉1 ∪

𝑉2, form complete subgraphs 𝐻1, 𝐻2 respectively. If 𝐶1, 𝐶2 refer 

to the cliques correspond to 𝐻1, 𝐻2 sequentially. Then, both 𝐶1 and 

𝐶2  are maximal cliques. Therefore, the clique number of the graph 

𝐺 is 𝜔(𝐺) =
𝑛−1

2
.    

Theorem 3.5. The graph 𝐺(ℤ𝑛) has a chromatic number 𝜒(𝐺) =
𝑛−1

2
. 

Proof: For 𝑛 ≥ 5, the vertices 1, 𝑛 − 1 are disjoint, so they have 

the same color and no other vertex can share this color, because 1 

is adjacent to all other vertices. The vertices 2, 𝑛 − 2 are disjoint 

so they have the same deferent color from 1 and no another vertex 

can occupy this color, because 2 is adjacent to all of other vertices, 

… etc., vertices 
𝑛−1

2
, 

𝑛+1

2
 are disjoint, so they have the same 

deferent color from all of the other previous vertices color, because 
𝑛−1

2
,  is adjacent to all of them. Thus, 𝜒(𝐺) =

𝑛−1

2
. 

In the graph 𝐺(ℤ𝑛), every vertex 𝑣 ∈ 𝑉 have 𝑛 − 3 degree 

[Theorem 3.1], that means an edge 𝑒 ∈ 𝐸 connected to 𝑣 must take 

𝑛 − 3 different colours, and so on. For any another vertex 𝑢 we 
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can use the same 𝑛 − 3 edges different colours with different color 

order, that lead us to the following corollary. 

Corollary 3.4. For any prime 𝑛 ≥ 5, the edge chromatic number 

in graph 𝐺(ℤ𝑛) is 𝜒′(𝐺) = 𝑛 − 3. 

4. Graphs for some prime integer 𝒏 

In this section we present digraphs 𝐺(ℤ𝑛) for some integer 𝑛 =

5, 7, 11, 13, 17, 19. In every figure form 1-6, one may notice that 

the vertices 
𝑛−1

2
,

𝑛+1

2
 are disjoint and their represented graphs are 

(n-3)-regular graphs. 

 
Figure 1: Shown is directed 

graph 𝑮(ℤ𝟓) 

 
Figure 2: Shown is directed 

graph 𝑮(ℤ𝟕) 
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Figure 3: Shown is directed 

graph 𝑮(ℤ𝟏𝟏) 

 
Figure 4: Shown is directed 

graph 𝑮(ℤ𝟏𝟑) 

 

 
Figure 5: Shown is directed 

graph 𝐆(ℤ𝟏𝟕) 

 
Figure 6: Shown is directed 

graph 𝑮(ℤ𝟏𝟗) 
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