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Abstract:

The response of a dynamical non-linear system of two-degree-of freedom, subjected to multi
excitations forces is investigated. Analysis of the amplitude and phase plane are obtained. The multiple
scale analyses of various 1:2 internal resonance conditions and simultaneous resonance case
Q=w, o =20, are considered. The method of multiple time scale (MTS) is applied to solve the non-
linear differential equations describing the system up to second order approximation. All possible

resonance cases at this approximation are obtained and studied numerically to determine the worst case.
The effects of different parameters are studied. The frequency response equations are solved numerically.

These vibrations were controlled using the damper R, = -G &, R, = —¢G,\&..
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1. Introduction:

Chaos is one of the most exciting topics in the field of physical sciences. Researchers from various
fields devoted too much effort in the analysis of chaotic behavior as well as the control of both vibrations
and chaos for various vibrating systems. Many ideas and approaches for controlling chaos have been
proposed in the past twenty years [1-5]. Zhang [6] analyzed the global bifurcation and chaotic dynamics
of a parametrically excited, simply supported rectangular thin plate. The method of multiple scales is used
to obtain the averaged equations in the presence of 1:1 internal resonance and primary parametric
resonance. Zhang et al. [7] investigated the local and global bifurcations of a parametrically and externally
excited simply supported rectangular thin plate subjected to transversal and in plane excitation
simultaneously.

Belhaq et al. [8] investigated the control of chaos of one-degree-of-freedom system with both
quadratic and cubic nonlinearities subjected to combined parametric and external excitations. Glabisz [9]
studied the stability of one-degree-of-freedom system under velocity and acceleration dependent non-
conservative forces. Eissa and Amer [10] controlled the vibration of a second order system simulating the
first mode of a cantilever beam subjected to primary and sub-harmonic resonance using cubic velocity
feedback. El-Bassiouny [11] made an investigation on the control of the vibration of the crankshaft in
internal combustion engines subjected to both external and parametric excitations via an elastomeric
absorber having both quadratic and cubic stiffness nonlinearities. Sayed and Hamed [12] studied the
response of a two degree-of freedom system with quadratic coupling under parametric and harmonic
excitations. The method of multiple scale perturbation technique is applied to solve the non-linear
differential equations and obtain approximate solutions up to and including the second-order
approximations. Abe et al. [13] investigated the non-linear responses of clamped laminated shallow shells
with 1:1 internal resonance between two antisymmetric modes the frequency-response curves were
obtained by the shooting method. Eissa and Sayed [14, 15] made a comparison between the active and the
passive vibration control of a simple pendulum described by a second order nonlinear differential equation
having both quadratic and cubic nonlinearities. they controlled the system applying either nonlinear
absorber (passive control) or negative velocity feedback or its square or cubic value (active control).
Yaman et al. [16] studied the problem of suppressing the vibrations of a nonlinear system with a cantilever
beam of varying orientation subjected to parametric and direct excitation. They applied the cubic velocity
feedback to the system to reduce the amplitudes of the system.

Chang et al. [17] investigated the bifurcations and chaos of a rectangular thin plate with 1:1 internal
resonance. Tian et al. [18] studied the dynamics of a shallow arch subjected to harmonic excitation in the
presence of both external and 1:1 internal resonance. Anlas and Elbeyli [19] studied the non-linear
response of rectangular and square metallic plates subject to transverse harmonic excitations. Frequency
response curves are presented for both square and rectangular plates for primary resonance of either mode
in the presence of a 1:1 internal resonance. Ye et al. [20, 21] dealt with the non-linear dynamic behaviors
of a parametrically excited, simply supported, symmetric cross-ply composite laminated rectangular thin
plate and a simply supported antisymmetric cross-ply composite laminated rectangular thin plate under
parametric excitation. The study is focused on the case of 1:1 internal resonance and primary parametric
resonance. Guo et al. [22] dealt with the non-linear dynamics of a four-edge simply supported angle-ply
composite laminated rectangular thin plate excited by both the in-plane and transverse loads. Amer and
Sayed [23], studied the response of one-degree-of freedom, non-linear system under multi-parametric and
external excitation forces simulating the vibration of the cantilever beam.

In the present paper, the non-linear vibrations and stability subjected to the transverse and in plane
excitations simultaneously are investigated. The method of multiple time scale is applied to obtain the
second-order uniform asymptotic solutions for the case of simultaneous primary in the presence of 1.2
internal resonances. All possible resonance cases are extracted and investigated at this approximation
order. It is quite clear that some of the simultaneous resonance cases are undesirable in the design of such
system. Such cases should be avoided as working conditions for the system. The stability of the system is
investigated with frequency response curves and phase-plane method. Some recommendations regarding
the different parameters of the system are reported.
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2. Mathematical Analysis:

& 268,08 wf X +eax’ =¢gfy? +ef cos(Qt)+ef , cos(2Qt) +R, (1)
W& 250,0,\8+ ) Y = ea,Xy +R, )

Where R, =-¢G &, R, =—¢G,¥&, and x, y are the vibration amplitudes of the composite laminated
rectangular thin plate for the first-order and the second-order modes, respectively, @, and o, the linear

natural frequencies of the thin Plate, and Q the excitations frequencies. f,, f, are the amplitudes of the
excitation forces, and ¢}, ¢,

are the linear damping coefficient of the plant, «,, «,, are the plant coupling constants, g is the non-linear
coefficient, and G,, G, are gain coefficients. We seek a second order uniform expansion for the solutions
of equation (1) in the form:

X (t,&)=Xo(To.Ty)+ex, (To,T,)+ X, (T, T,)+O (£°) 3)
y (t,é‘) = yo(T01T1)+5y1(T01T1)+52y2 (TO,T1)+O(53) 4)

where T, =&"t ,(n=0,1), and the time derivatives became

2
3—t= D, +é&D; +... , el D¢ +2¢D,D, +&°D} +..., (5) whereand ¢ is

small a perturbation parameter and 0 < ¢ <<1, T, is the fast time scale, T, is the slow time scales.

Substituting equations (3), (4) and (5) into equations (1) and (2) and equating the coefficients of same
power of & in both sides, we obtain the following set of ordinary differential equations:

Order &°:

(Dg +f)x,=0 6) (D¢+a3)y,=0
(7)

Order &'

(Dg +@f )X, ==2DD;X, — 20D X — X § + BY ¢ +F,C0s QT +f, €05 2QT —G, (DX,)°

(8)

(D& +@3 )y, =—2DgD,Y 4 —2£,0,D5Y o + 2,X4Y s ~G, (DY )’ (9)
Order &°:
(D§ +@f )X, =—D7X, —2D4D,X, —2DDyX, - 2£,0D,X s — 2,0,D X, — 31X X +28Y,Y ¢
~3G,(DgX, )’ DXy — 3G, (DoX, )’ DoX, (10)
(D¢ +@})y, =-D7y,—2DoD,y,—2DyD,y, —2£,0,D,Y s —2,0,D0Y; + @, X oY, + XY o
~3G,(DyY,) D1y —35,(Dgy, ) Doy, (11)
The general solution of equations (6) and (7) is given by
Xo(To.T,) = A, (T, exp(i T ;) + A, (T,) exp(—i T ,) (12)
Yoo, T,) =B, (T exp(ia,T,) + B, (T,)exp(—i @,T ) (13) where A,, B, are

unknown functions in T, at this level of approximation and can be determined by elimination the secular
terms from the next order of perturbation. Substituting equations (12) and (13) into equations (8), (9) yields

—
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(D¢ + @ )x, = (-2 oD,A, - 25ji of A, =3, A7 A, —3i f A AG,)exp(i o o)
+ BB expRi T )+ (G, i 0’Ad —a,Al) exp(3i T ) +%exp(i QT,)

+%2exp(2i QT,)+ B, B, +cc (14)

(D¢ +@})y, = (2i ,D, By—24,i 0} By—3i 03B; B,G,)exp(i o,T,) +(G, i wB;) exp(3i ;T )
+a,A, By exp(i (@, + @,)T,) + a,A, B, exp(i (o, —@,)T,) +CC (15) The general solutions
of equations (14) and (15) are:
X, (T, T,)=AT,)exp(i &oT,)+E,exp(2i o,T )+ E,exp(3i oT,) + E;exp(i QQT,)
+E,exp(21QT,)+E; +cc (16)
Y, T,) =B, (T,)exp(i ol ;) +E,exp(Bia,l,)+E,exp(i (@ + o,)T,)+Ezexp(i (&, —w,)T,)+cC
17)

Substituting equations (12), (13), (16) and (17) into equations (10), (11) and solving the resulting equation
we get:

X, (TO1T1) =A, (Tl) exp(i a)lTO) +E, exp(3i a)lTO) +Ey exp(2i a)lTO) +Ey exp(2i a)zTo)
+E,, exp(iQT,)+E,exp(21 QT,)+E,, exp(5i @T ) + E 5 exp(2i (o, + @,)T )
+E . exp(i o, + Q)T )+ E; exp(2i (o, + Q)T,) + E ; exp(2i (v, — )T )

+E,exp(i (Q—2m))T,)+E,, exp(2i (Q—,)T,) + E,, exp(4i o,T )
+E,, exp(i (@, +2m,)T,) + E . exp(i (@, - 2w,)T,) + E,, +CC (18)

Y, (ToTy) =B, () exp(i o,T ) + E 5 exp(3i w,T ;) + E , exp(i (@, + @,)T ) + E ,; exp(i (o, — @,)T )
+E g exp(i (@, +3w,)T ) + E o exp(i (20, + @,)T ;) + E 5o exp(i (200, — @,)T )
+E exp(i (@, —3w,)T,) + E 4, exp(i (@, +3m,)T ) + E 5; exp(i (@, + Q)T,)
+E,, exp(i (a)z + ZQ)TO) +E4 exp(i (30)1 - a’z)To) +Eg exp(i (22— a)z)To)
+E,, exp(i (2Q-m,)T,) + E ;. exp(5i @,T ;) +cC (19)

where E,, (n=1,...,38) are complex functions in T, and cc denotes the complex conjugate terms.

From the above derived solutions, the reported resonance cases are:

1) Primary resonance: Q=tw,, n=12.

2) Sub-harmonic resonance: Q =2,
: 1
3) Super-harmonic resonance: Q = iE @,

11
4) Internal resonance: @, =tnw,, N = 2,3,5,5.
5) Simultaneous resonance: any combination of above resonance cases is considered as simultaneous
resonance.
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3. Stability analysis:

From the numerical solution at resonance cases obtained Table 1, we find that the worst is resonance case
Is the simultaneous resonance case Q = @,, @, = 2w, . So that we introduce the detuning parameters o, and

o, according to the following:
Q=wm, +¢e0,,0, =20, + 0, (20)

Substituting equation (20) into equations (14) and (15) and eliminating the secular and small divisor terms
from x, and y,, we get the following:

2iwD,A, =-2Li 07A, -3, Al A,-3i oA AG,+ BB exp(~i o, l)+ exp(l ol,)

(21)
2i 0,D,B, =-2¢,i 0> B,—3i 0B B,G,+a,A, B, exp(io,T,) (22)
We express the complex function A, B, in the polar form as
1 , 1 .
A(Ty) = Ea(Tl) exp(i &,(T,)), By(T,) = Eb(Tl) exp(i 6,(T,)) (23) where a, b, 6,

and 0, are real.

Substituting equation (23) into equations (21) and (22) and separating real and imaginary part yields:

a'=—§1a)1a—§a)12a361+iﬁbzsin (p1+f—15in(p2 (24)
8 4o, 20,
3 .1, f,
ad, =—a@a ——— fb° cosgp, ———Cos @, (25)
8wy 4o, 20,
3 53 1 . ' 1
b =—§szb ——a)zb G2 +—a2ab Sing, (26) b¢92 =— azab cos @,
8 40)2 4a)2
(27)

where ¢, =260, -6, —o,T,, p,=0T,-6,.

For the steady state solution a'=b'=0, ¢ =0;m =1,2. Then it follows from equations (24)-(27) that
the steady state solutions are given by:

—§lw1a—§wfa3Gl+iﬁbzsin¢1+f—13in¢2 =0 (28)
8 4, 20,

iozla3—i,6’b2c05¢>l—f—lcos%—aalzo (29)

10) 4o, 20,

Cop-SoG, + 1 aabsing =0 (30) b(P2 %)+ L o abcosg =0
8 4o, @,

(31)
From equations (28)-(31), we have the following cases:

Case 1: a=0and b =0: in this case, the frequency response equation is given by:

9 9 3 3 3f ]
(—64a)2 al + aa)l“Gf)a6 + (— oG, “ a,0,)at + (- 8a)12 a, COS @, —?1601 Gsing,)a’
1 1 1
) f2
+(§ a)l +0; 2)a? +(—61C03(p2 1g“ls.ln(pz)a+4—12:0 (32)
@, @,
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Case 2: a=0and b = 0: in this case, the frequency response equation is given by:

9
64

Case 3: a=0and b =#0: in this case, the frequency response equation are given by the following
equations:
9

3 3 3f, 3f .
—adl+—w'GHA + (S G, ——a,0,)a" + (——L , COS “Lw G,sin
(646012 1 T e @ D) (44,1 ] 4, 101) (- 8601 1 @, — g “vn ?,

—ia)lGl,Bbzsingol—izalﬂbzcos(pl)a +(¢l ol +ol)a’ +(—01C05(02 f.£ sing,
16 16w ,

0'GHo+> gzwgc; b+ (S @)tﬂ (33)

1 ] 1 f? 1 f
— =, Bb%ing, +—o, Bb%cosp)a+ (——+—— B°b*+—L Bb®cos(p, — =0
5 ¢p 2] 20, o, p)a+( 46()12 16(012 B 46012 B (0, —,))

(34)

2
ia)ZGZvaL( £, 3 — w,a,G,asing)b* + (Sl + (014 0,)

—lgaasin
64 16 4 o 52%2 21

" (o + oy )asacosg, + ﬁ a?a%Yo? =0 (35)
2 2

3.1. Linear solution:
Now to the stability of the linear solution of the obtained fixed let us consider A, and B, in the forms

1 . . 1 . .
Aq (T1) = E(p1_ |q1) exp(i 51T1) and BO(Tl) = E(pz_ 'qz)EXp(l 52T1) (36) where P P2y 0y
and q, are real values and considering o6, = 0,0, = 0,.

Substituting equation (36) into the linear parts of equations (21), (22) and separating real and imaginary
parts, the following system of equations are obtained:

Case 1: for the solution (a0 and b =0), we get
p, + & @p, + 0, =0 (37)
, f
q,-o,p;, + g, ——+=0 (38)
20

1
The stability of the linear solution is obtained from the zero characteristic equation
-(1+{m) — 0 _
0, -(A+¢@)

A =—¢ o tio

The linear solution is stable in this case if and only if @, > o, ad otherwise it is unstable.

(39) where

Case 2: for the solution (a=0 and b #0), we get

p; +&w,p, +0,4, =0 (40) q; —o,p, + 4,09, =0
(41)

The stability of the linear solution is obtained from the zero characteristic equation

-(1+&,m,) —0,

= 42) where =— *i
2 ~(h+¢,0) 2 where 4o =Goy £l
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The linear solution is stable in this case if and only if ,m, > o,, ad otherwise it is unstable.

Case 3: for the solution (a =0 and b=0), we get

p,+ &P, +od;, =0 (43)
, f :
ql_o-lpl—'_é/lwlql_jzo (44) p;+4,0,p, +0,0,=0
1
(45) q;, —o,p, +&,m,9, =0 (46) The stability of the linear
solution in this case is obtained from the zero characteristic equation
—(A+S,m) -0, 0 0
-1+ 0 0
% (+am) =0 (47) after extract we obtain
0 0 -(1+4,m,) -0,
0 0 o, -(1+4,m,)
that
A+t A+ A2+ A+, =0, (48) where
n=2(6o +&m,), 1, = 01 +; "’4;14/2‘01(02‘*' 220)22 )

Iy —24’1601(4’2(()2-1-02)—#2(2&)2(4/ f-0o7), I‘4=(é’12 -07)($0; +03)
According to the Routh-Huriwitz criterion, the above linear solution is stable if the following are satisfied:
r,>0,rr,—r,>0,r(rr,—r)-r’r,>0r,>0.
3.2. Non-linear solution:

To determine the stability of the fixed points, one lets
a=a,+a,, b=b,+b,andg, =@, ,+¢,,,(Mm=12), (49) where a,, b,, and
@, are the solutions of equations (28-31) and a,;, b,,, @,,, are perturbations which are assumed to be
small compared to a,, b, and ¢, ,. Substituting equation (49) into equations (24-27), using equations
(28-31) and keeping only the linear terms in a,;, b,,, ¢, We obtain:

Case 1: for the solution (a =0 and b =0), we get:

(4/10)1"' CUlGla'lo)an"'( COS ©50) Py (50)
l
o 9a f .
0= (T 2000y, (1 singy)p, (51)
0 8wy 2

The stability of a given fixed point to a disturbance proportional to exp(At) is determined by the roots of

f
-6, — 0)12 G 1a10 _;) COS @
! =0 (52) Consequently, a
ﬁ — % — S| n q)
20
Q) 8w, za)lam

non-trivial solution is stable if and only if the real parts of both eigenvalues of the coefficient matrix (52)
are less than zero.

Case 2: for the solution (a #0 and b=0), we get:

9 . p b?
a, =—(5o +— a)lz Glalzo)ail + (%Sm @ro) by + (—-C0s @)y, + ( COS () Py (53)
8 20, 4o, 20,
r 368 ]
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2

. 9. pos f )
(P21:(ﬁ_ 81a10)a11+(2ﬂb;j Cos%o)bu_(ﬁsm(/)10)%1_(2—15'”(020)(021 (54)

a, o, 2 25 25

- a . 9 a . a
by, = (ﬁbm singy,)ay, — (5,0, + § (022 bIZOGZ - ﬁam singyy) by, + (jaiobm CoS @)@y, (55)
) )

2

' o, 923, o a, o +o, pby
=(—=2 -0 __2 cos a,,—(—=2—a,,Ccosp,, + - cos b
(21 (am 80, 20, Pro) Ay (Za’zblo a, 21 by, 200, ®r0) Py,
2
a . . f .
+(_2a10 sing, ——=sing,,)p, —( : SiN@,0) Py (56)
2w, dwa, w9,

The stability of a particular fixed point with respect to perturbations proportional to exp(At) depends
on the real parts of the roots of the matrix. Thus, a fixed point given by equations (56)-(59) is
asymptotically stable if and only if the real parts of all roots of the matrix are negative.

4. Numerical results:

The behavior of the given system of equations (1), (2) has been solved numerically applying Runge-
Kutta 4" order method [24, 25]. Fig. 1 illustrates the response and phase-plane for the non- resonant system
at some practical values of the equations parameters. From this fig. we can see that the system is stable
with the steady state amplitude x and y are 0.01 and 0.03 respectively, and the phase plane shows the

system is stable with multi limit cycles

00
001
r 0
0.01-
0.0-

0 100 200 300 40 500 600

004

0.0

Dreht) H
0.023

0.04

W 30 400
[

b
"

Fig. 1. The basic case of the system without controller.
4.1 Resonance Cases:

Some of the deduced resonance cases of the plant without the absorber are studied numerically as shown
in Table 1. From this table, we see that the amplitude increasing at the resonance cases and the worst case
Is the simultaneous resonance case when Q =, o, = 2w,, which the amplitudes are increased to about
1000% compared with the basic case shown in fig. 1. If the control is added the amplitudes x and y are

reduced 0.04 and 0.01 respectively compared with the system without absorber shown in Fig.2, which
means that the system needs to reduced the amplitude of vibration or controlled, in Fig. 3.

—
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0 100 20 30 40 S0 60 0 80 0100

005- 0 005 0.10
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004 0.15
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002-] 08
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0 100 200 300 400 M0 600
[

| J]
03

- o !

mn 0.1-

008 03]

010 20 30 40 S0 60 0 S 088 602000 006 D0

[ |2
4

Fig. 3. System behavior with controller at simultaneous resonance

4.2 Effect of the Controller:

Fig. 3, illustrates the results when the controller is effective, when Q=a,, and @, =2w,.The

effectiveness of the controller is Ea ( Ea = steady state amplitude of the main system without controller/
steady state amplitude of the main system with controller) are about 2.5 and 12.

Table 1. Resonance cases

Resonance cases Amplitude of x Amplitude of y

[ 50 )
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Without With Ea Without With Ea

control control control control
®01=302 0.01 0.01 1 0.3 0.05 6
Q=01 0.3 0.12 2.5 0.04 0.01 4
20=0) 0.004 0.004 1 0.03 0.01 3
102=0Q 0.003 0.0028 11 0.05 0.01 5
:0=02 0.02 0.018 11 0.03 0.01 3
20=103 0.006 0.005 1.2 0.05 0.01 5
202=10 0.005 0.004 1.25 0.05 0.01 5
0= o1, 01 =202 0.025 .001 2.5 0.6 0.05 12

4.3 Effect of Parameters:
The amplitude of the x is monotonic increasing function of the excitation force f, as shown in Fig.

4a. But the amplitude of the system is monotonic decreasing function of the linear damping coefficient &,
as shown in Fig. 4b. and the amplitude of the system is monotonic decreasing function of the ratio Q/

as shown in Fig. 4c. and the amplitude of the system is monotonic decreasing function of the gain
coefficient G, as shown in Figs. 4d.

The amplitude of the y is monotonic increasing function of the plant coupling constants «, , as shown
in fig. 4e. But amplitude of the system is monotonic decreasing function of the gain coefficient G, as
shown in Fig. 4f.

12
(a) 016 b
! 014 ( )
X
z 08 5 0
° T u
= =
= O 008
o
E 04 E 006
02 004
0.02
0
0 0.2 04 0.6 08 1 12 0
0 0.05 01 0.15 02 0.25 03 0.35
f1
G
0.16 0.16 7 ( d)
0.14 1 (© 0.14 1
x 0.12 1 x 0.12 4
2 014 T 01
35 35
£ 0081 %_ 0.08 1
g' 0.06 1 E 0.06 1
L 004 0.04 -
002 1 0.02 1
0 A
0 :
4 2 4 6 8 1
-0.02 0 5 10 15 20
O/ Gt
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. 0.14 -
0 (e) ()
0.7 0.12
0.6
3 3 0.1
- 05 g 0.08 4
2 =
= 04 o
g_ g 0061
031 <
< 0.04
0.2
0.02 1
01
0 ; ; .
0 0 2 4 6 8 10 12

10 15 20
02

o
IS

G2

Fig. 4. Effect of parameters
4.5 Response curves:

The frequency response equations (32), (33), (34) and (35) are nonlinear algebraic equations of a, b .
These equations are solved numerically as shown in Figs. 5-8. From case 1 where a=0, b =0: Fig .5,
shows that the steady state amplitudes of the system are monotonic decreasing function in ¢, . But monotonic
increasing function in @, . Fig. 6, shows the force response equation (32) is a nonlinear algebraic equation of
a, which are solved numerically of the amplitude against the excitation force amplitude f,. From this Fig.
the steady state amplitude is monotonic increasing functions in @,, o, as shown in Figs. 6a, 6b. The steady
state amplitude is monotonic decreasing functions in G, ¢; as shown in Fig. 6¢, 6d. which are a good
agreement with the frequency response curves. From case3, where a = 0, b = 0 : Fig. 7, shows that the steady
state amplitudes of the system are monotonic increasing functions in @, , But monotonic decreasing functions
inea, . From Fig. 8, shows that the steady state amplitudes of the system are monotonic decreasing functions
ind,, G,, a,.

b]

Figure 5: Frequency Response curves ( a0 and b=0)

—

372

'




Samira M. Soleman and others

(b)

=06 ——»

Fig. 6. Excitation response curve (a0 and b=0)

Fig. 7. Response curves (a0 and b #0)

—
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Fig. 8. Response curves ( a£0 and b#0)

5. Conclusions:

The vibrations of a coupled second order nonlinear differential equations having
1- The worst resonance case is the simultaneous resonance case when Q=a®,, @ =2m,, which the
amplitudes are increased to about 1000% compared with the basic case .

2- The control can reduced the amplitudes x and y to about 0.04 and 0.01 respectively compared with the
system without absorber.

3- The amplitude of the x is monotonic increasing function of the excitation force f,. But it is decreasing
function of the gain coefficient G, ¢;,and Q/a, .

4- The amplitude of the y is monotonic decreasing function of the coefficient gain G, . But it is monotonic
increasing function of the plant coupling constants «, .
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