AN EXPOSITIONOF GRAPHS RELATEDTO FINITE COMMUTATIVE RINGS

Hamza Daoub

University of Zawia /Faculty of Science / Libya / h.daoub@zu.edu.ly

Abstract

In this paper, we investigates the relation between the ring-theoretic properties of R and the graphtheoretic properties of $G(R)$, where R is a finite commutative ring with unity, and $G(R)$ is a simple undirected graph associated to R such that two deferent vertices $u, v \in V(G)=R$ are adjacent if $u^{2}=v^{2}$. Rings of interest are $R=\mathbb{Z} / n \mathbb{Z}$.

Keywords:Commutative ring, Simple graphs, Vertex degree, Regular graphs, Quadratic polynomial.

في هذا البحث، نحقق في العلاقة بين الخصائص النظرية للحلقة لRوالخصائص النظرية للرسم البياني لـ $G(R)$ ، حيثRعبارة عن حلقة تبديلية منتهية ذاتعنصر محايد ،وG(R)هو رسم بياني بسيط غير موجاه مرتبط بـ Rبحيث يكون

$$
\text { الرأسان المختلفانu,v } \mathcal{U} \text { متجاورتان إذا كان u } u^{2}=v^{2} \text {. الحلقات ذات الأهمية هيZ } R=\mathbb{Z} / n \mathbb{Z} \text {. }
$$

الكلمات المفتاحية :الحلقات التبديلية، الرسوم البيانية البسيطة، درجة الرأس، الرسوم البيانية المنتظمة، الحدوديات
التربيعية.

Author Correspondent:h.daoub@zu.edu.ly

1. INTRODUCTION

Let n be a positive integer, the set of all congruence classes of integers for a modulo n is called the ring of integers modulo n and is denoted $\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}$. Since \mathbb{Z}_{n} is finite, it has integer characteristic $\operatorname{char} \mathbb{Z}_{n}=n$. If n is not a prime number, then \mathbb{Z}_{n} has zero-divisors and $\mathbb{Z}_{n}[x]$ is not a unique factorization ring, that is, if $\alpha, \beta \neq 0$, then $(x-\alpha)(x+\alpha)=(x-\beta)(x+\beta)$,are two distinct, non-associated factorizations of

$$
\begin{equation*}
x^{2}=\operatorname{amodn}, \tag{1}
\end{equation*}
$$

where $a=(\pm \alpha)^{2}=(\pm \beta)^{2}$. If $n=p$ is a prime, then \mathbb{Z}_{n} don't havezero-divisors. However, if \mathbb{Z}_{n} is a domain, then it is a field, and $\mathbb{Z}_{n}[x]$ is a unique factorization domain.

Given anintegern, consider the graph $G\left(\mathbb{Z}_{n}\right)$ with vertex set \mathbb{Z}_{n}, where two deferent vertices u and vare adjacent exactly when $u^{2}=v^{2}$.The graph presentedby $G\left(\mathbb{Z}_{n}\right)$ is a disconnected simple graph.

This article aims to expose the most recent developments in describing the structural properties of the graph $G\left(\mathbb{Z}_{n}\right)$ of the finite commutative ring \mathbb{Z}_{n}.

For the sake of completeness some basic algebraic and number-theoretic notions, one can refer to[1, 2, 3].

2. PRELIMINARIES

Definition 2.1.An integer a is called a quadratic residue of nif $(a, n)=1$, and the congruence $x^{2} \equiv$ a (modn) has a solution. Otherwise, a is called a quadratic nonresidueof n.

Since the derivative of x^{2} is $2 x$, and $2 x \equiv 0(\bmod 2)$ we have to distinguish between the cases $\mathrm{p}=2$ and p odd prime.

Theorem 2.1.Let p be an odd prime, and $(a, p)=1$. Then there is a solution of $x^{2}=a\left(\bmod p^{e}\right), e>1$, if and only if there is a solution of $x^{2}=a(\bmod p)$.

Theorem 2.2.Let $n=p_{1}^{e^{1}} p_{2}^{e^{2}} \ldots p_{r}^{e^{r}}$. Then the number a is a square modn iff there are numbers $x_{1}, x_{2}, \ldots, x_{r}$ such that

$$
\begin{gathered}
x_{1}^{2} \equiv a\left(\bmod p_{1}^{e^{1}}\right) \\
x_{2}^{2} \equiv a\left(\bmod p_{2}^{e^{2}}\right) \\
\vdots \\
x_{r}^{2} \equiv a\left(\bmod _{r}^{e^{r}}\right)
\end{gathered}
$$

Let $\mathrm{N}(n)$ denote the number of solutions of $x^{2}-a=0 \operatorname{modn}$. If $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}$ is the prime decomposition of n, then $\mathrm{N}(n)=\mathrm{N}\left(p_{1}^{n_{1}}\right) \mathrm{N}\left(p_{2}^{n_{2}}\right) \ldots \mathrm{N}\left(p_{k}^{n_{k}}\right)$.

Theorem 2.3.If p is an odd prime, $(a, p)=1$ anda is a quadratic residue of p, then the congruence $x^{2} \equiv a(\bmod p)$ has exactly two roots.

Proof: See [3].
Corollary 2.1. Let p be prime, the congruence

$$
x^{2} \equiv 1(\bmod p)
$$

has only the solutions $x= \pm 1(\bmod)$.
Theorem 2.4.Let p be an odd prime. Then there are exactly $(p-1) / 2$ incongruent quadratic residues of p and exactly $(p-1) / 2$ quadratic non-residues of p.

Corollary 2.2.The equation $x^{2} \equiv a(\bmod p)$ has no solution if and only if $a^{\frac{(p-1)}{2}} \equiv-1(\bmod p)$.
An element x of R is called nilpotent if there exists an integer $m \geq 0$ such that $x^{m}=0$.
In graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree $(\operatorname{deg}(v)$ is used to refer to the degree of a vertexv).

3. MAIN RESULTS

One notice that if n is an odd prime then according to Theorem 2.3, there are only two solutions of the quadratic polynomial (1), which means that $\operatorname{deg}(v)=1$ for all $v \in \mathbb{Z}_{n}$. Furthermore, the vertex $v=0$ is omitted in this case, because \mathbb{Z}_{n} is a field. Therefore, \mathbb{Z}_{n} doesn't contain nilpotent elements that are adjacent to $v=0$. If n is not a prime number, thendeg $(v)>1$ in some components up to the deferent factorizationof $x^{2}-a=0 \operatorname{modn}$.

Since the degree of a vertex v depends on the number of roots of the quadratic polynomial (1), then we have the following.

Proposition 3.1. Let m be the number of distinct roots of the quadratic polynomial (1), and v is a solution of this quadratic polynomial. Then, $\operatorname{deg}(v)=m-1$.
Proof: Suppose that $x^{2}-a=0 \operatorname{modn}$ is reducible quadratic polynomial, and v is one of its solutions, consequently- v is also a root.As stated in Theorem 1.2 , the polynomial (1) has $m>1$ deferent factorization, which give usm deferent solutions. Thus, $\operatorname{deg}(v)=m-1$.■

The degree of a vertex v in G by definition is the number of arrows adjacent to this vertex. Since the solution of the polynomial (1) relies on the integer number n, then the degree of v can be determined as follows:

Theorem 3.1. Let $p_{1}, p_{2}, \ldots, p_{k}$ be the prime component of the number n. Then the highest degree of a vertex v in the graph $G\left(\mathbb{Z}_{n}\right)$ equals to $2^{k}-1$.

Proof. Let $x^{2}-a=0 \operatorname{modn}$ be a reducible quadratic polynomial over \mathbb{Z}_{n}. From Theorem 2.3 for each prime number p_{i}, we have

$$
N(n)=2 \times 2 \times \ldots \times 2(\text { ktimes })=2^{k}
$$

Since v is considered as one of these solutions, thus $\operatorname{deg}(v)=2^{k}-1$.
In general, we can say that if $p_{1}^{n_{1}}, p_{2}^{n_{2}}, \ldots, p_{r}^{n_{r}}$ be the prime component of the number n. Then the highest degree of a vertex v in the graph $G\left(\mathbb{Z}_{n}\right)$ equals to $N\left(p_{1}^{n_{1}}\right) N\left(p_{2}^{n_{2}}\right) \ldots N\left(p_{r}^{n_{r}}\right)-1$. For instance, in the graph shown in Figure 7the highest degree of a vertex v is $\operatorname{deg}(v)=6$.

Consider $n=p_{1} p_{2} \ldots p_{k}$, all solutions of quadratic polynomials $x^{2}-a_{i}=0 \operatorname{modnis}$ a connected component in $G\left(\mathbb{Z}_{n}\right)$. When $k=1$ we have a 1-regular graph(every two vertices are connected separately with an edge). Therefore, from Theorem 2.4 we find that the number of components $c_{n}=\frac{p-1}{2}$.If $k>1$, some quadratic polynomials $x^{2}-a_{i}=0 \operatorname{modn}$ will have more than two solutions. Thus, the number of components c_{n} will be less than $\frac{p-1}{2}$.

Consider $x^{2}-b=0 \operatorname{modn}$ is a quadratic polynomial with $\pm b_{i}$ solutions such that $1<i<l$ for some positive integers iand l. The solutions $\pm b_{i}$ perform a simple completesubgraph (that is a componentin G)and this subgraph is ak-regular graph in G, where $k=\operatorname{deg}\left(b_{i}\right)$ for some i.

4. GRAPHS FOR SOME INTEGERSn

In this section, we introduce the graphs $G\left(\mathbb{Z}_{n}\right)$ for some primes and composite integer $n=$ $7,8,15,16,24,25,36$. We observe that the highest degree of a vertex in $G\left(\mathbb{Z}_{n}\right)$ depends on deferent factorization of the integer n. For instance, inFigure 1, the shown graph $G\left(\mathbb{Z}_{7}\right)$ is 2-regular, while inFigure 2, Figure 3, and Figure 4 there are 3-regular subgraphs. In Figure 7, we have two5-regularsubgraphs and six 3-regular subgraphs. In Figure 5 there is a unique 7-regular subgraph and three 3-regular subgraphs. In Figure 6, the shown graph $G\left(\mathbb{Z}_{16}\right)$ includes a unique subgraph with vertex degree greater than one.

Figure 1: Shown is the graph $\mathbf{G}\left(\mathbb{Z}_{7}\right)$

Figure 2: Shown is the graph $\mathbf{G}\left(\mathbb{Z}_{\mathbf{8}}\right)$

Figure 3: Shown is the graph $\mathbf{G}\left(\mathbb{Z}_{15}\right)$

Figure 4: Shown is the graph $\mathbf{G}\left(\mathbb{Z}_{16}\right)$

Figure 5:Shown is the graph $\mathbf{G}\left(\mathbb{Z}_{\mathbf{2 4}}\right)$

Figure 6: Shown is the graph $\mathbf{G}\left(\mathbb{Z}_{25}\right)$

Figure 7: Shown is the graph $\mathbf{G}\left(\mathbb{Z}_{36}\right)$

REFERENCES

[1] Childs, Lindsay N. (2009). A concrete introduction to higher algebra. New York: Springer.
[2] Kraft, James S., and Lawrence C. (2016). Washington. An introduction to number theory with cryptography. CRC Press.
[3] Daoub, Hamza.(2017). On Digraphs Associated to Quadratic Congruence Modulo n. University Bulletin-ISSUE No. 193.

