

AN EXPOSITIONOF GRAPHS RELATED TO FINITE COMMUTATIVE RINGS

Hamza Daoub

University of Zawia /Faculty of Science / Libya / h.daoub@zu.edu.ly

ABSTRACT

In this paper, we investigates the relation between the ring-theoretic properties of *R* and the graphtheoretic properties of *G*(*R*), where *R* is a finite commutative ring with unity, and *G*(*R*) is a simple undirected graph associated to *R* such that two deferent vertices $u, v \in V(G) = R$ are adjacent if $u^2 = v^2$. Rings of interest are $R = \mathbb{Z}/n\mathbb{Z}$.

Keywords: Commutative ring, Simple graphs, Vertex degree, Regular graphs, Quadratic polynomial.

الملخص

في هذا البحث، نحقق في العلاقة بين الخصائص النظرية للحلقة ل
$$R$$
والخصائص النظرية للرسم البياني ل (R) ، $c(R)$ في هذا البحث، نحقق في العلاقة بين الخصائص النظرية للحلقة يعن حلقة بين العرب R بحيث يكون حيث R عبارة عن حلقة تبديلية منتهية ذاتعنصر محايد ، $e(R)$ هو رسم بياني بسيط غير موجه مرتبط ب R بحيث يكون الرأسان المختلفان $R = \mathbb{Z}/n\mathbb{Z}$ متجاورتان إذا كان $u^2 = v^2$. الحلقات ذات الأهمية هي $u, v \in V(G) = R$.

الكلمات المفتاحية :الحلقات التبديلية، الرسوم البيانية البسيطة، درجة الرأس، الرسوم البيانية المنتظمة، الحدوديات التربيعية.

Author Correspondent:h.daoub@zu.edu.ly

1. INTRODUCTION

Let *n* be a positive integer, the set of all congruence classes of integers for a modulo *n* is called the ring of integers modulo *n* and is denoted $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$. Since \mathbb{Z}_n is finite, it has integer characteristic $char\mathbb{Z}_n = n$. If *n* is not a prime number, then \mathbb{Z}_n has zero-divisors and $\mathbb{Z}_n[x]$ is not a unique factorization ring, that is, if $\alpha, \beta \neq 0$, then $(x - \alpha)(x + \alpha) = (x - \beta)(x + \beta)$, are two distinct, non-associated factorizations of

$$x^2 = amodn,\tag{1}$$

where $a = (\pm \alpha)^2 = (\pm \beta)^2$. If n = p is a prime, then \mathbb{Z}_n don't havezero-divisors. However, if \mathbb{Z}_n is a domain, then it is a field, and $\mathbb{Z}_n[x]$ is a unique factorization domain.

Given an integer *n*, consider the graph $G(\mathbb{Z}_n)$ with vertex set \mathbb{Z}_n , where two deferent vertices *u* and *v* are adjacent exactly when $u^2 = v^2$. The graph presented by $G(\mathbb{Z}_n)$ is a disconnected simple graph.

This article aims to expose the most recent developments in describing the structural properties of the graph $G(\mathbb{Z}_n)$ of the finite commutative ring \mathbb{Z}_n .

For the sake of completeness some basic algebraic and number-theoretic notions, one can refer to [1, 2, 3].

2. PRELIMINARIES

Definition 2.1. An integer a is called a **quadratic residue** of nif(a, n) = 1, and the congruence $x^2 \equiv a \pmod{n}$ has a solution. Otherwise, a is called a **quadratic nonresidue** of n.

Since the derivative of x^2 is 2x, and $2x \equiv 0 \pmod{2}$ we have to distinguish between the cases p = 2 and p odd prime.

Theorem 2.1.Let p be an odd prime, and (a, p) = 1. Then there is a solution of $x^2 = a \pmod{p^e}$, e > 1, if and only if there is a solution of $x^2 = a \pmod{p}$.

Theorem 2.2.Let $n = p_1^{e^1} p_2^{e^2} \dots p_r^{e^r}$. Then the number *a* is a square modin iff there are numbers x_1, x_2, \dots, x_r such that

$$x_1^2 \equiv a \ (modp_1^{e^1})$$
$$x_2^2 \equiv a \ (modp_2^{e^2})$$
$$\vdots$$
$$x_r^2 \equiv a \ (modp_r^{e^r})$$

Let N(n) denote the number of solutions of $x^2 - a = 0 \mod n$. If $n = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ is the prime decomposition of n, then N(n) = N($p_1^{n_1}$)N($p_2^{n_2}$)...N($p_k^{n_k}$).

Theorem 2.3. If p is an odd prime, (a,p) = 1 and a is a quadratic residue of p, then the congruence $x^2 \equiv a \pmod{p}$ has exactly two roots.

Proof: See [3].

Corollary 2.1. Let p be prime, the congruence

$$x^2 \equiv 1 \pmod{p}$$

has only the solutions $x = \pm 1 \pmod{p}$.

Theorem 2.4.Let p be an odd prime. Then there are exactly (p - 1)/2 incongruent quadratic residues of p and exactly (p - 1)/2 quadratic non-residues of p.

Corollary 2.2. The equation $x^2 \equiv a \pmod{p}$ has no solution if and only if $a^{\frac{(p-1)}{2}} \equiv -1 \pmod{p}$.

An element x of R is called *nilpotent* if there exists an integer $m \ge 0$ such that $x^m = 0$.

In graph theory, a *complete* graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A *regular* graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree (deg(v)) is used to refer to the degree of a vertex v).

3. MAIN RESULTS

One notice that if *n* is an odd prime then according to **Theorem 2.3**, there are only two solutions of the quadratic polynomial (1), which means that deg(v) = 1 for all $v \in \mathbb{Z}_n$. Furthermore, the vertex v = 0 is omitted in this case, because \mathbb{Z}_n is a field. Therefore, \mathbb{Z}_n doesn't contain nilpotent elements that are adjacent to v = 0. If *n* is not a prime number, thendeg(v) > 1 in some components up to the deferent factorization $x^2 - a = 0 \mod n$.

Since the degree of a vertex v depends on the number of roots of the quadratic polynomial (1), then we have the following.

Proposition 3.1. Let *m* be the number of distinct roots of the quadratic polynomial (1), and v is a solution of this quadratic polynomial. Then, deg(v) = m - 1.

Proof: Suppose that $x^2 - a = 0 \mod n$ is reducible quadratic polynomial, and v is one of its solutions, consequently-v is also a root.As stated in Theorem 1.2, the polynomial (1) has m > 1 deferent factorization, which give us m deferent solutions. Thus, deg(v) = m - 1.

The degree of a vertex v in G by definition is the number of arrows adjacent to this vertex. Since the solution of the polynomial (1) relies on the integer number n, then the degree of v can be determined as follows:

Theorem 3.1. Let $p_1, p_2, ..., p_k$ be the prime component of the number n. Then the highest degree of a vertex v in the graph $G(\mathbb{Z}_n)$ equals to $2^k - 1$.

Proof. Let $x^2 - a = 0 \mod n$ be a reducible quadratic polynomial over \mathbb{Z}_n . From **Theorem 2.3** for each prime number p_i , we have

$$N(n) = 2 \times 2 \times \ldots \times 2 \ (ktimes) = 2^k.$$

Since v is considered as one of these solutions, thus $deg(v) = 2^k - 1$.

In general, we can say that if $p_1^{n_1}, p_2^{n_2}, \dots, p_r^{n_r}$ be the prime component of the number *n*. Then the highest degree of a vertex *v* in the graph $G(\mathbb{Z}_n)$ equals to $N(p_1^{n_1})N(p_2^{n_2})\dots N(p_r^{n_r}) - 1$. For instance, in the graph shown in Figure 7the highest degree of a vertex *v* is deg(v) = 6.

Consider $n = p_1 p_2 \dots p_k$, all solutions of quadratic polynomials $x^2 - a_i = 0 \mod n$ is a connected component in $G(\mathbb{Z}_n)$. When k = 1 we have a 1-regular graph(every two vertices are connected separately with an edge). Therefore, from Theorem 2.4 we find that the number of components $c_n = \frac{p-1}{2}$. If k > 1, some quadratic polynomials $x^2 - a_i = 0 \mod n$ will have more than two solutions. Thus, the number of components c_n will be less than $\frac{p-1}{2}$.

Consider $x^2 - b = 0 \mod n$ is a quadratic polynomial with $\pm b_i$ solutions such that 1 < i < l for some positive integers *i* and *l*. The solutions $\pm b_i$ perform a simple complete subgraph (that is a componentin *G*) and this subgraph is a*k*-regular graph in *G*, where $k = deg(b_i)$ for some *i*.

4. GRAPHS FOR SOME INTEGERSn

In this section, we introduce the graphs $G(\mathbb{Z}_n)$ for some primes and composite integer n = 7, 8, 15, 16, 24, 25, 36. We observe that the highest degree of a vertex in $G(\mathbb{Z}_n)$ depends on deferent factorization of the integer n. For instance, inFigure 1,the shown graph $G(\mathbb{Z}_7)$ is 2-regular, while inFigure 2, Figure 3, and Figure 4 there are *3-regular* subgraphs. In Figure 7, we have two5-*regular* subgraphs and six 3-regular subgraphs. In Figure 5 there is a unique 7-regular subgraph and three 3-regular subgraphs. In Figure 6, the shown graph $G(\mathbb{Z}_{16})$ includes a unique subgraph with vertex degree greater than one.

An Exposition of Graphs Related to Finite Commutative Rings-

REFERENCES

[1] Childs, Lindsay N. (2009). A concrete introduction to higher algebra. New York: Springer.

[2] Kraft, James S., and Lawrence C. (2016). Washington. An introduction to number theory with cryptography. CRC Press.

[3] Daoub, Hamza.(2017). On Digraphs Associated to Quadratic Congruence Modulo n. University Bulletin–ISSUE No. 19 3.