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ABSTRACT 

 

In this presented paper, we are concerned with the oscillatory behaviour of solutions of some 

nonlinear ordinary differential equations of second order. Primarily, we are interested in the study of 

equations with integrable coefficients. By using the Riccati substitution technique, many open problems 

are discussed and some new sufficient conditions for the oscillation are obtained. Some applications of 

the obtained results are also provided to show the feasibility of the new results. 
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 الملخص 

, تحديدا انيةمن الرتبة الث بسلوك التذبذب لحلول بعض المعادلات التفاضلية العادية غير الخطيةنهتم في هذه الورقة,  

لحصول على باستخدام تعويض ريكاتي وتم ا  تمت مناقشة عدد من القضايا حيث المعادلات ذات المعاملات القابلة للتكامل

.دوى النتائج الجديدةتزويد البحث ببعض التطبيقات للنتائج المتحصل عليها لبيان ج.  تم الشروط الكافية للتذبذب عدد من  

 .التذبذب, المعادلات التفاضلية غير الخطية, الرتبة الثانية, معاملات قابلة للتكامل: لمفتاحية الكلمات ا
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1. INTRODUCTIOIn physical and engineering problems, questions related to the oscillation theory play 

an important role. As a result, there has been much activity concerning with oscillatory and asymptotic 

behavior of many different classes of differential equations, see for example [1, 3–10] and the references 

cited therein. This paper deals with the problem of the oscillation of all solutions of the following second 

order nonlinear differential equation 

                                        (1) 

where  and  are continuous functions on the interval [ ,  is a positive function on the 

real line   and    .  Our attention here is concentrated only to such solution  of the differential 

equation (1) which exists on some interval [   

 

Definition 1. A solution  of the differential equation (1) is said to be nontrivial if  for at 

least one  in the interval [   

Definition 2. A nontrivial solution  of the differential equation (1) is said to be oscillatory if it has 

arbitrarily large zeros on [  otherwise, it is said to be nonoscillatory. 

Definition 3. Equation (1) is called oscillatory if all of its solutions are oscillatory, otherwise, it is said to be 

nonoscillatory. 

 

         Recently, Ahmed and Ali [2] provided some new criteria for the oscillation of equation (1) and their 

results are for the sublinear case, that is, for , and their results are not applicable to equation (1) 

with . Also, one can see the papers of  Elabbasy and Elzeiny [5], Grace and Lalli [7], Philos [13] 

and Yeh [16]. However, the main purpose of this paper is to establish some new criteria for the oscillation 

of equation (1) for the superlinear case, that is, for 1 , by using an averaging condition of the type 

introduced by Kamenev [8]. Therefore, results obtained here can be considered as a continuation of the 

work done by Ahmed and Ali [2]. As a contribution to this study we refer to the papers of Grace [6], Yeh 

[16] and Saad et al. [14]. 

2. MAIN RESULTS 

In this section we state and prove some results of the oscillation of the equation (1). Some examples are 

also listed here to show the evidence of our own results. 

Theorem 1 

        Suppose that  

(O1)   0 < 𝐴 ≤ r(𝑡) ≤ 𝐵, 𝑡 ≥0, and   

(O2)    𝑟̇ (𝑡) > 0, 𝑡 ≥ 0 ,  
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Then the equation (1) is oscillatory when 1 . 
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Proof : Assume the contrary ; then there exists a solution )(tx  which may be assumed to be positive on 

 ,1T for some .01 tT   Dividing  (1) through by )(tx   and integrating from 1T  to t  ,we obtain that  

                        (2) 

 

 Now, from the condition (O1), since )(trA  , then we have from (2), 

2

)1( 



                (3) 

Integrating (3) once more from T1 to t we obtain  

                (4) 

For the first integral of (4), we have from the condition (O2) that  is a non-decreasing on 01 tTt  . 

So, by the Bonnet's theorem there exists  tTT ,12   such that  
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By substituting in (4) we obtain that 
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Since 1)(0  andBtr . Then, by the assumption that 0)( tx , we have 
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Hence (5) becomes  

                (6) 

We distinguish three cases of the behaviour of )(tx


, namely, 

(i) )(tx


 oscillatory on  ,1T , 

(ii)   133 ,0)( TTsomeforTontx 


, 

(iii)   133 ,0)( TTsomeforTontx 


, 

and show that the assumption 0)( tx  leads to a contradiction in each case. Suppose that )(tx


 

oscillatory, then there exists a sequence  ...,2,1, ntn  in ,1T  such that                  




nastandtx nn 0)( . 
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It follows from the inequality (3) and condition (O3) that  
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Then by Schwarz's inequality we note that  
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thus, for all 1Tt   , we have  
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1    . Then we obtain 
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which implies that 
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On the other hand since  11)1(2   and  then we have 
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 Now, inequalities (*) and (**) give us the following inequality is valid  
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Hence from (6) we obtain , for all 1Tt   , that  
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Dividing (7) by t  and taking the upper limit as t , we obtain  
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which is a contradiction to the condition (O4). Next, suppose that 130)( TTtfortx 


. Thus  

)()( 3Txtx   and )()( 3
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We deduce from (6) that  
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Dividing (8) by t and taking the upper limit as t , we obtain 

  


t

T

s

T
t

dsduuq
t

1 1

)(
1

suplim  , 

which again contradicts the condition (7) . Finally, we assume that 130)( TTtfortx 
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If the integral in (10) is finite as t , we can deduce a contradiction as a similar way as the case when 
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for Tt  ,  we multiply (10) through by  
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and integrating fromT to t  as follows 
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For the integral in L.H.S. of (12), since 
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Using (13) in the inequality (12), we obtain  
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Therefore )()()( 11 TxTtMtx  , which implies that   tastx )( . But this contradicts 

the assumption that  0)( tx  .This completes the proof. 

Example 1.  Consider the following differential equation  
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Hence, by the Theorem 1, we conclude that the given equation is oscillatory for all 1   
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Theorem 2: 

   Suppose that (O1) and (O3), (O4) hold and suppose in addition that 

(O5)     

Then the equation (1) is oscillatory when 1 . 

Proof : Assume the contrary , then there exists a solution )(tx  which may be assumed to be positive on 

 ,1T for some .001  tT  As in the proof of Theorem 1 , we obtain the inequality (4) , that is 
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Now , for the first integral of (4), we have by condition (O5) that )(tr  is non increasing on   ,1T .So , by 
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By substituting in (4), we obtain 
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then the rest of the proof is similar that of the proof of Theorem 2 and then it will be omitted. 

Example 2 
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Hence, by the Theorem 2, we conclude that the given equation is oscillatory for all 1  

Remark 

Theorems 1 and 2 are extended for the results of Nasr [11], Onose [12] and Wong [15].   

 
3.CONCLUSIONS  

In a conclusion, we study the oscillation behavior for some nonlinear differential equations. However, we 

obtained some sufficient conditions for all the solutions to be oscillate. Our results extend and/or 

generalize some previous theorems in the literature. Some examples are also given to illustrate the new 

results. 
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