
 تحث  المرونة الحرارية المعممة في وجود فجوات دراسة ومناقشة مسألة

 مختلفة. باستخدام نظريات من الدوران والجاذبية الأرضية تأثير كل

 ــ كلية التربية الزاوية ــ جامعة الزاوية الذيب محمدالزائرة رمضان د . 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

 : ملخص عربي

 حرارية في هذا البحث تم دراسة تأثير الجاذبية الأرضية والدوران على مادة مرنة     

 الحرارية المرونة معادلات استعراض تم ومسامية ذات خاصية حرارية, حيث

 تحت تأثير الجاذبية الأرضية والدوران على هذا الجسم في وجود فجوات في المعممة

 باستخدام وذلك .حراري أو مصدر خارجية أخرى قوى وجود عدم مع صورة خطية

 الزمن ذات(L-S) وشولمان لورد (,CDنظرية الارتباط )وهي  نظريات ثلاثة

 سترخاء. كما تمذات زمني الإ (G-L) نظرية جرين وليندساي و الاسترخائي الواحد

 استخدام طريقة تحليل السلوك العادي للحصول على الكميات الفيزيائية المختلفة مع

 الجاذبية الأرضيةمن  رسم هذه الكميات ومقارنتها في وجود وعدم وجود كلًا 

 والدوران.

والنتائج التي خرج بها هذا البحث توضح مدى الفرق بين النظريات محل الدراسة    

عمل مقارنات بيانية للنتائج في ضوء تلك النظريات حيث يمكن القول بأن وبواسطة 

كل القيم من المعادلات الفيزيائية تتقارب إلى الصفر ومحققة لشروط الحدية وأيضا كل 

وران والجاذبية الأرضية لهما دور كبير في دراسة الدوال تكون مستمرة وكذلك الد

المعادلات الفيزيائية, لان السعات من الكميات تكون متغيرة ) متزايدة أو متناقصة( مع 

 تزايد قيم الدوران والجاذبية الأرضية.

كما يوضح هذا العمل إن الدوران والجاذبية الأرضية لهما دور مهم في توزيع كميات  

الحرارة وأيضا يوضح تأثير سرعة المصدر الحراري الموجود في الحقل باستثناء 

 الوسط على سرعة تقدم الموجات الحرارية والموجات الميكانيكية. 

ونشير إلي أن جميع النتائج التي تم الحصول عليها والرسم كانت باستخدام        

 (.Matlab R2013aبرنامج )
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Abstract.  

The purpose of this work is to study the rotation of thermo-elastic 

material with voids under the effect of gravity. The entire porous 

medium is rotating with a uniform angular velocity. The 

formulation is applied under three theories of generalized 

thermoelasticity: Lord-Schulman with one relaxation time, 

Green-Lindsay with two relaxation times, as well as the coupled 

theory. The applied methodology in the problem is the normal 

mode analysis method for solving the thermal shock problem to 

obtain the exact expressions for the displacement components, 

the stresses, the temperature distribution, and the change in the 

volume fraction field which have been depicted graphically by 

the comparison between  different theories (CD, L-S, G-L) in the 

presence and the absence of the rotation and the gravity influence 

due to the porous thermoelastic materials.  

 Keywords: generalized thermoelasticity; Gravity; Voids; 

Rotation; Normal mode analysis.  

1. Introduction  
The generalized thermoelasticity theories have been developed 

with the aim of removing the paradox of infinite speed of heat 

propagation inherent in the classical coupled dynamical 

thermoelasticity theory investigated by Biot [1]. In the 

generalized theories, the governing equations involve thermal 

relaxation times and they are of hyperbolic type. The extended 

thermoelasticity theory by Lord and Shulman [2] which 

introduces one relaxation time in the thermoelastic process and 

the temperature-rate-dependent theory of thermoelasticity by 



Green and Lindsay [3] which takes into account two relaxation 

times are two well established generalized theories of 

thermoelasticity. The theory of linear elastic materials with voids 

is one of the most important generalizations of the classical 

theory of elasticity. This theory is useful for investigating various 

types of geological and biological materials for which the elastic 

theory is inadequate. This theory is concerned with elastic 

materials consisting of a distribution of small porous (voids), in 

which the void volume is included among the kinematics 

variables and in the limiting case of vanish this volume it reduces 

to the classical theory of elasticity. Puri and Cowin [4] studied 

the behavior of plane waves in a linear elastic material with 

voids. Iesan [5] presented a linear theory for thermo-elastic 

material with voids. He derived the basic equations and proved 

the uniqueness of the solution, reciprocity relation and variation 

characterization of the solution in the dynamical theory. Nunziato 

and Cowin [6] studied a nonlinear theory of elastic materials with 

voids. They showed that the changes in the volume fraction cause 

an internal dissipation in the material and this internal dissipation 

leads to a relaxation property in the material. Also Cowin and 

Nunziato [7] developed a linear theory for elastic materials with 

voids for the mathematical study of the mechanical behaviour of 

porous solids. This linearized theory of elastic materials with 

voids is a generalization of classical theory of elasticity and 

reduces to it when the dependence on change in volume fraction 

and its gradient are suppressed. Domain of influence theorem in 

the linear theory of elastic materials with voids was discussed by 

Dhaliwal and Wang [8]. Dhaliwal and Wang [9] also developed a 

heat-flux dependent theory of thermoelasticity with voids . Cicco 

and Diaco [10] presented a theory of thermoelastic material with 

voids without energy dissipation. 

The effect of gravity on the wave propagation in an elastic solid 

medium was first considered by Bromwich in [11] treating the 

force of gravity as a type of body force.  Sezawa in [12] studied 



the dispersion of elastic waves propagated on curved surfaces. In 

[13] Love extended the work of Bromwich which investigated 

the influence of gravity on superficial waves and showed that the 

Rayleigh wave velocity is affected by the gravity field. Recently 

Othman et al. [14-16] and Othman and Lotfy [17] have studied 

many problems using the effect of the gravitational field on 

thermoelasticity. Sengupta and Acharya [18] have studied the 

effect of gravity on the propagation of waves in a thermoelastic 

layer. Ailawalia and Narah [19] depicted the effects of rotation 

and gravity in the generalized thermoelastic medium. Sengupta et 

al. [20] studied the effect of gravity on some problem of 

propagation of waves in an anisotropic elastic solid medium. 

Abd-Alla et al. [21-24] investigated the influence of the gravity 

for the different theories. Ahamed [25] investigated the Stoneley 

waves in non-homogeneous orthotropic granular medium under 

the influence of a gravity field. In seismology and geophysics, 

the problem of the propagation of Rayleigh waves under the 

effect of gravity is significantly by Love [26]. Some researchers 

in the past have investigated different problems of the rotating 

media. Othman [27-29] used the normal mode analysis to study 

the effect of rotation on plane waves in generalized 

thermoelasticity with one and two relaxation times. Schoenberg 

and Censor [30] studied the effect of rotation on elastic waves. 

Othman et al. [31] have studied the generalized magneto-

thermovisco-elastic plane waves under the effect of rotation 

without energy dissipation. Othman and Sarhan [32] have 

discussed the effect of rotation on a fibre-reinforced 

thermoelastic under Green-Naghdi theory and the influence of 

gravity. Chand et al. [33] presented an investigation of the 

distribution of deformation, stresses and magnetic field in a 

uniformly rotating homogeneous isotropic, thermally and 

electrically conducting elastic half space. 

The purpose of the present work is to determine the components 

of displacement, stresses, temperature distribution and the 



volume fraction field in a homogenous, isotropic, thermoelastic 

solid with voids in case of absence and presence of rotation and 

gravity. The model is illustrated in the context of three  theories 

(CD, L-S, G-L). The normal mode analysis is used to obtain the 

exact expressions for physical quantities. The distributions of 

considered variables are represented graphically. 

2. Formulation of the Problem and Basic Equation  

We consider a homogeneous, isotropic, thermoelastic material 

with voids in the un-deformed temperature 0T ,with half space

( 0)z   the rectangular Cartesian coordinate system ( , , )x y z

having originated on the surface 0y  .For two dimensional 

problem we assume the dynamic displacement vector as 

1 3( ,0, ),iu u u 1,3i  . 

Equation of motion 

The basic governing equations of a linear thermoelastic rotation 

medium with voids gravitational field under three theories are: 

The strain-stress relation written as:   

, ,

1
2

( ), , 1,3.ij i j j ie u u i j                (1) 

ij kk ij ijσ λe +b 1+ T δ μ e ,
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∂
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Since the medium is rotating uniformly with an angular velocity 

 n where n is a unit vector representing the direction of the 

axis of the rotation, the equation of motion in the rotating frame 

of reference has two additional terms (Schoenberg and Censor 

[12]): centripetal acceleration ( )   u due to time varying 

motion only and Corioli's acceleration 2 , & u  then the equation 

of motion in a rotating frame of reference is 

, [ { } 2( ) ], , 1,3.ij j i i iu i j       && &  u u  (3) 

The dynamical equations of an elastic medium are given by 
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 The equation of voids is 
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The heat conduction equation, 
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The components of stress tensor are 
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Where ijσ are the components of stress tensor, ije are the 

components of strain, ,   are the Lame' constants, (3 2 ) t    

such that t is the coefficient of thermal expansion, ij is the 

Kronecker delta, , , .i j x z 0, , , , ,b m     are the material 

constants due to the presence of voids,   is the density, EC is the 

specific heat at constant strain, 1 0n , n   are parameters, 0 ,    are 

the thermal relaxation times, K  is the thermal conductivity, 0T  is 

the reference temperature is chosen so that  0 0( ) / 1,T T T =    is 

the change in the volume fraction field. 

Eqs. (3) and (7) are the field equations of the generalized linear 

magneto-thermo-elasticity for a rotating media, applicable to the 

coupled theory, four generalizations, as follows: 

1. The coupled (CD) theory, when 
*

1 0 01, 0.n n       



2. Lord-Shulman (LS) theory, when 
*

1 0 1 0 01, 0, 0.n n n t         

3. Green-Lindsay (G-L) theory, when 
*

1 0 1 0 01, 0, 0, 0.n n n t         

Our aim is to investigate the effect of temperature dependence of 

modulus of elasticity, keeping the other elastic and thermal 

parameters as constant. Therefore, we may assume that  

0 0 0 0 0 0( ), ( ), ( ), ( ), ( ), ( ),f T f T f T f T f T f T                

0 0 0 10 0 0( ), ( ), ( ), ( ), ( ).m m f T k k f T f T b b f T f T       

 (11) 
Where 0 0 0 0 0 0 0 0 10 0 0, , , , , , , , , ,m b k         are 

constants, ( )f T  is a given non-dimensional function of 

temperature. In case of a temperature independent modulus of 

elasticity, ( ) 1,f T   such that *
0( ) (1 ),f T T   where *  is the 

linear temperature coefficient. For the case a modulus of 

elasticity, the temperature is independent when * 0.   

For simplification, the following non-dimensional variables are 

used: 
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From Eq. (12) in to Eqs. (4)-(7) we get 
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Also, the constitutive Eqs. (8)-(10) reduce to 
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We define displacement potentials R and Q which relate to 

displacement components 1u and 3u as, 
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By substituting from Eq. (21) in Eqs. (13)-(16), this yield 
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3   Normal Mode Analysis 

The solution of the considered physical variable can be 

decomposed in terms of normal modes as the following form 
* * * * * * *

1 3 1 3[ , , , , , , ]( , , ) [ , , , , , , ]( )exp[ ( )],ij iju u T R Q x z t u u T R Q z i t ax     

 (26) 

Where * * * * * * *
1 3[ , , , , , , ]iju u T R Q   (z) are the amplitudes of the 

function,   is the complex time constant, 1i    and  a  is the 

wave number in x-direction. 

Using Eq. (26) in Eqs. (22)-(25), lead to  
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Using  Eqs. (20) and (26) in Eqs. (17)-(19), we get 
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Eliminating  * *,Q   and  *Τ  between Eqs. (27) - (30), we get the 

following eighth ordinary differential equation satisfied with  *R :  
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2

3 6 9 4 8 13 4 10 11 6 4 7 13 4 7 8 4 7 10 11S S S S S S S S S a A S S S S S S S S S S     

2 2
5 8 12 5 9 11 6 5 7 12 5 7 11 5 7 9 11,S S S S S S a A S S S S S S a S S S S    

 
2

4 2 7 9 13 2 7 10 12 3 6 9 13 3 6 10 12 4 7 8 13 4 7 10 11F S S S S S S S S S S S S S S S S S S S S S S S S a     

2
5 7 8 12 5 7 9 11 .S S S S S S S S a   

Equation (34) can be factored as 
2 2 2 2 2 2 2 2

1 2 3 4[(D )(D )(D )(D )] (z) = 0.*k k k k R                      (35) 

Where 2( 1,2,3,4)nk n   are the roots of the characteristic equation of 

Eq. (34). 

The solution of Eq. (34) which is bounded as ,z   is given by: 
4

1

k z* n
n

n=

R = M e ,


                                                       (36)                                                                                                          (37) 

1

,
4

z* n
2n n

n=

k
= L M e 
                                                                                                          

(38) 



1

.
4

z* n
3n n

n=

k
Τ = L M e


                                                                                                        

(39) 

 Where, ( 1,2,3,4)M n 
n  are constants. 

To obtain the components of the displacement vector, from (36) 

and (37) in (20) 

*
1

1

,
4

zn
4n n

n=

k
u = L M e


                        (40)

 
                                                                                                       (41) 

From Eqs. (36)-(41) in (31)-(33) to obtain the components of the 

stresses 

*

1

,
4

zn
xx 6n n

n

k

=

= L M e 
                                                                   (42)

  
*

1

,
4

zn
zz 7n n

n

k

=

= L M e 
                                                                                                      

(43) 

*

1

.
4

zn
xz 8n n

n

k

=

= L M e 
                                                                                                     

(44) 

Where,   

6

2
7

S
,

( )
1n

n

L =
k S




     

1n
2 2

5 6 8 10 2 3

2
5 9 4 10

( ) + ( )
,

( ) +

n n
2n

n

S A k S S k S S L
L =

S k S S S

  


           

 
2

4 2n 2 3 1n
3n

5

S S
,nL - k S L

L =
S

 
       1 ,4n n nL = ia k L ,     

1= ( ),5n n nL k iaL         
 

12 4n n 5n 4n 13 2n 14 3n= (ia ) + 2ia + ,6nL A L k L L A L A L 

 
12 4n n 5n n 5n 13 2n 14 3n= (i ) 2 + ,7nL A aL k L k L A L A L     4 5( ).8n n n nL = k L iaL    

 

4   Boundary conditions 

In this section, we need to consider the Boundary conditions at 
0z  , in order to determine    

the parameter ( 1,2,3,4).nM n   

(1) The mechanical boundary condition 



      

( + )
1  ,      = 0, 0. i t ax

zz xzσ Pe σ =
z

 
 


                            

(45)  

 (2) The thermal boundary condition that the surface of the half-

space is subjected to 

       2
( + ).i ωt axT = P e                                                                                             

 (46) 

Where, 1P is the magnitude of the applied force in of the half-

space and 2P is the applied constant temperature to the boundary. 

Using the expressions of the variables into the above boundary 

conditions (45), (46), we obtain ; 
4

17n n

n=1

L M = P ,                                                                                                

 (47) 
4

8n n

n=1

L M = 0,                                                                                                  

 (48) 
4

= 0n 2n n

n=1

k L M ,                                                                                           

 (94) 
4

2 .3n n

n=1

L M = P                                                                                                 

 (50) 

Invoking boundary conditions (47)-(50) at the surface 0z  of the 

plate, we obtain a system of four equations. After applying the 

inverse of matrix method, we get the values of the four constants 
( 1,2,3,4).nM n    

6   Numerical Results and Discussion  
Copper material was chosen for purposes of numerical 

evaluations and the constants of the problem were taken as 

follows: 



10 27.76 10 . ,N m    
10 1 23.86 10 . . ,kg m s     

1 1386 . . ,K w m k    
5 11.78 10 ,t k          38954 . ,kg m        

1 1383.1 . . ,EC J kg k         

0 293 .T K                           
6 22.68 10 / deg,N m       * 11

1 3.58 10 / .s      

The voids parameters are  
15 21.753 10 ,m       10 21.475 10 / ,N m     10 21.13849 10 / ,b N m   
53.688 10 ,N        6 22 10 / deg,m N m     

3 2

0 0.0787 10 / .N m s         

The comparisons were carried out for 

0.5,x     0 . 0 3 ,t     0 1,i       0 0 . 6 ,      1 2,    1 0 . 1,p 
   

2p 8, 0 1 ,s     
1.5,   1.5,a    0.1,   0 6.z    

The above numerical technique, was used for the distribution of 

the real parts of the displacement components 1u and 3 ,u  the 

temperature distribution ,T  the stress components, xx , zz and

xz and change in the volume fraction field   with distance in 

three theories, for these cases 

 (i)  with and without rotation effect are shown graphically in 

figures 1-7 in the case of two  

      different values of rotation 0.1 / , 0)rad s   while 
29.8 /g m s . 

 (ii) with and without the gravity properties in Figures 8-14 in the 

case of two different   

        values of ( 0,g  29.8 / )g m s  while 0.1 /rad s  . 

The computations were carried out for a value of time 0.03.t   

The above numerical technique, was used for the distribution of 

the real part of the displacement components 1u  and 3 ,u  the 

thermodynamic temperature T and the stress components xx ,

zz  , xz  and change in the volume fraction field     with the 

distance z for the problem under consideration. All the 

considered variables depend not only on the variables ,t x and ,z  



but also depend on the thermal relaxation times 0  and 0.  The 

results are shown in Figs. 1-14.  

Figs. 1-6 show comparisons among the considered variables in 

the absence and presence of the gravity effect ( 0,g 
29.8 / ).g m s   

Fig. 1 shows that the distribution of the displacement component 

1u  in case of   2( 9.8 / ,0)g m s  in the context of the three 

theories, we notice that the displacement component 1u  
distribution is increasing with increase of a gravity for 0z  . It is 

observed that the gravity has a great effect on this physical 

quantity. Fig. 2 shows that the distribution of the displacement 

component 3u  in case of 2( 9.8 / ,0)g m s  in the context of the 

three theories, it noticed that the displacement component 3u  
distribution is increasing with increase of a gravity for 0z  . 

Fig. 3 explain that the distribution of temperature T begins from 

positive value (which is the same point) in case of 2( 9.8 / )g m s  

and 0,g   in the context of the three theories, and we notice that 

the gravity has a small effect in the distribution of temperature .T  

Fig. 4 depicts that the distribution of change in volume fraction 

field   begins from negative value in case of 2( 9.8 / )g m s  and 

0,g   in the context of the three theories, however the change in 

volume fraction field  is increases with the increase of gravity 

value for 0.z   Fig. 5 shows that the distribution of stress 

component xx begins from negative value (which is distinct 

values with small distances) in case of 2( 9.8 / )g m s  and 0,g 

in the context the three theories, and we deduce that the gravity 

has a great effect on the stress component ,xx  while the 

distribution of stress component xx is decreasing with increasing 

of the gravity. Fig. 6 determines that the distribution of stress 

component zz begins from negative value (which is the same 

point) in case of 2( 9.8 / )g m s  and 0,g   in the context of the 



three theories, and we notice that zz increases with increasing of 

the gravity. 2( 9.8 / )g m s  and 0,g  Fig. 7 depicts that the 

distribution of stress component xz begins from zero (which is 

the same point) in case of 2( 9.8 / )g m s  and 0,g  in the context 

of the three theories, and the distribution of stress component xz

is decreasing with increasing of the gravity, and then approaches 

to zero with an increase in distance .z  
Figures 8-14 show the distribution of the displacements 1u and 

3 ,u the temperature ,T  the stress components xx , ,zz xz , in case 

of two different values, (for absence and presence of the rotation) 

and in case of the gravity 2( 9.8 / )g m s . 
 Fig. 8 shows that the distribution of the displacement component 

1u  in case of   0.1 / , 0)rad s   in the context of the three 

theories, we notice that the displacement component 1u  
distribution is increasing with increase of a rotation for 0z  . It 

is observed that the rotation has a great effect on this physical 

quantity. Fig. 9 shows that the distribution of the displacement 

component 3u  in case of 0.1 / , 0)rad s   in the context of the 

three theories, it noticed that the displacement component 3u  
distribution is increasing with increase of a rotation for 0z  . 

Fig.10 explain that the distribution of temperature T begins from 

positive value (which is the same point) in case of 0.1 / ,rad s   

and 0,   in the context of the three theories, and we notice that 

the rotation has a small effect in the distribution of temperature 

.T  Fig. 11 depicts that the distribution of change in volume 

fraction field  begins from negative value in case of 

0.1 / ,rad s   and 0,   in the context of the three theories, 

however the change in volume fraction field  is increases with 

the increase of rotation value for 0.z   Fig. 12 shows that the 

distribution of stress component xx begins from negative value 

(which is distinct values with small distances) in case of 



0.1 / ,rad s   and 0,  in the context the three theories, and we 

deduce that the rotation has a great effect on the stress 

component ,xx  while the distribution of stress component xx is 

decreasing with increasing of the rotation. Fig. 13 determines that 

the distribution of stress component zz begins from negative 

value (which is the same point) in case of 0.1 / ,rad s   and 

0,   in the context of the three theories, and we notice that zz

increases with increasing of the rotation. Fig. 14 depicts that the 

distribution of stress component xz begins from zero (which is 

the same point) in case of 0.1 / ,rad s   and 0,  in the context 

of the three theories, and the distribution of stress component xz

is decreasing with increasing of the rotation, and then approaches 

to zero with an increase in distance .z  

3D curves 15-18  represent the relation between the physical 

quantities and both components of distance, in the presence of 

the rotation 0.1 / ,rad s   and the modulus of elasticity is 

dependent on the gravity ( 29.8 / , 0g m s ) in the context of the 

(G-L) theory. These figures are very important to study the 

dependence of these physical quantities on the vertical 

component of distance. The curves obtained are highly 

depending on the vertical distance and all the physical quantities 

are moving in wave propagation. 

 



 
      Figure 1: The displacement component u1 distribution against 

z with and without gravity.        

 
       Figure 2: The displacement component u3 distribution 

against z with and without gravity. 
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     Figure 3: The displacement of the temperature T against  z 

with and without gravity.  

 
    Figure 4: The displacement of volume fraction field    against  

z with and without gravity.  
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Figure 5:  The displacement of the stress tensor zzσ  against  z 

with and without gravity.  

 
Figure 6:  The displacement of the stress tensor xxσ  against  z 

with and without gravity.  
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       Fig. 7:  The displacement of the stress tensor xzσ  against  z 

with and without gravity.

 
Fig. 8 Horizontal displacement distribution 1u in the absence and 

presence of rotation 
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Fig. 9  Vertical displacement distribution 3u in the absence and 

presence of rotation 

 
   Fig. 10 Thermodynamic temperature distribution  in the 

absence and presence of rotation  
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Fig.11 The displacement of volume fraction field   in the 

absence and presence of rotation. 

 
Fig.12  Distribution of stress component xx in the absence and 

presence of rotation 
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        Fig. 13 Distribution of stress component zz in the absence 

and presence of rotation. 
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Fig. 14 Distribution of stress component xz in the absence and 

presence of rotation.

 
Fig. 15 (3D) Distribution of the displacement component 1u  against both 

          components of distance based on (G-L) model at 
20.1 / , 9.8 / .rad s g m s    

 
Fig. 16 (3D) Thermodynamic temperature distribution T against both 

components  of distance based on (G-L) model at
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20.1 / , 9.8 / .rad s g m s  

 
Fig. 17 (3D) Distribution of the change in volume fraction field  against 

both components of distance based on (G-L) model at 
20.1 / , 9.8 / .rad s g m s       

                

 
Fig. 18 (3D) Distribution of the stress component zz  against both      

components of distance based on (G-L) model at
20.1 / , 9.8 / .rad s g m s    
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7. Conclusions 

By comparing the figures that were obtained for the three thermoelastic theories, 

important phenomena are observed: 

1.  The values of all physical quantities converge to zero with increasing distance 

x, and  

 all functions are continuous. 

2. .   The phenomenon of finite speeds of propagation is manifested in all figures. 

3.  All physical quantities satisfy the boundary conditions. 

4.  The thermoplastic materials with voids have an important role in the 

distribution of the  field quantities. 

5. the rotation and gravity have a great role in all considered physical quantities, 

since the   

     amplitudes of these quantities is varying (increasing or decreasing) with the 

increase of the  

     rotation and the gravity values. 

6.  Analytical solutions based upon normal mode analysis of the thermoelastic 

problem in       

        solids have been developed and utilized. 

7. Finally it deduced that the deformation of a body depends on the nature of the 

applied    

     forces and gravity effect as well as the type of boundary conditions. z 
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