العادية وبعض تطبيقاتها في الفضاءات الضبابية الحدسية - lpha

هدى المقطوف ميره ، أسماء مسعود سربوت _ كلية التربية الزاوية _ جامعة الزاوية

الملخص العربى :

الهدف من هذا البحث هو دراسة الفصل الضبابي الحدسي العادي من النوع – α وذلك بدراسة الصور من الدوال المستمرة الضبابية الحدسية كذلك سوف ندرس الفصل الضبابي الحدسي العادي من النوع - $\pi g \alpha$ ودراسة خاصية - $\pi g \alpha$ العادية في الفضاءات الجزئية, علاوة على ذلك سوف نناقش بعض خواصها.

On α -Normal And Some Applactions In Intuitionistic Fuzzy Spaces

Hudi Almaqtouf Meerah And Asma Masoud Sarbout

<u>Abstract</u>

The aim of this paper is to study the class of intuitionistic fuzzy α -normal spaces with studying the forms of intuitionistic fuzzy continuous functions. Also we study the class of intuitionistic fuzzy $\pi g \alpha$ - normal, and $\pi g \alpha$ -normality in subspaces. Moreover, we investigate some of their properties. *Keywords:*

intuitionistic fuzzy α -open set, intuitionistic fuzzy $\pi g \alpha$ -closed set,

intuitionistic fuzzy pre α -open continuous.

1.Introductiot

The concept of fuzzy set was introduced by Zadeh in his classical paper [12] in 1965. Using the concept of fuzzy sets,

Chang [3] introduced the concept of fuzzy topological space . In [1], Atanassov introduced notion of intuitionistic fuzzy sets in 1986. Using the notion of intuition- istic fuzzy sets, Coker [4] defined the notion of intuitionistic fuzzy topological spaces in 1997. In this paper, we study the classes of normal spaces, namely α -normal spaces and $\pi g \alpha$ – normal spaces in ntuitionistic fuzzy topological spaces, we obtain some properties of these form in intuitionistic fuzzy topological spaces. Moreover, we study the forms of intuitionistic fuzzy π generalized α -normality in subspaces, and investigate some of their properties and characterizations.

2.Preliminaries

Definition 2.1[1]

An intuitionistic fuzzy set (IFS in short) A in x is an object having

the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \}$ where the functions $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by *IFS* (*X*), the set of all intuitionistic fuzzy sets in *X*.

Definition 2.2 [1]

Let *A* and *B* be intuitionistic fuzzy sets of the form and $B = \{ \langle x, \mu_B(x), v_B(x) \rangle | x \in X \} A = \{ \langle x, \mu_A(x), v_A(x) \rangle | x \in X \}$

(a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$

(b) A = B if and only if $A \subseteq B$ and $B \subseteq A$

(c) $A^c = \{\langle x, \nu_A(x), \mu_A(x) \rangle | x \in X \}$ (d) $A \cap B = \{\langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle | x \in X \}$ (e) $A \cup B = \{\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle | x \in X \}$

The intuitionistic fuzzy sets $0_{\sim} = \{\langle x, 0, 1 \rangle | x \in X\}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle | x \in X\}$ are respectively the empty set and the whole set of *X*. **Definition 2.3** [4]

An intuitionistic fuzzy topology (IFT in short) on x is a family τ of IFSs in X satisfying the following axioms:

(i) $0_{\sim}, 1_{\sim} \in \tau$

(ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$

(iii) $\bigcup G_i \in \tau$ for any family $\{Gi/i \in J\}$

In this case the pair (X, τ) is called an intuitionistic fuzzy topological **Definition 2.3** [4]

An intuitionistic fuzzy topology (IFT in short) on x is a family τ of IFSs in X satisfying the following axioms:

(i) $0_{\sim}, 1_{\sim} \in \tau$

(ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$

(iii) $\bigcup G_i \in \tau \square$ for any family $\{Gi/i \in J\}$

In this case the pair (X,τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in $\tau \Box$ is known as an intuitionistic fuzzy open set (IFOS in short) in *X*. The complement A^c of an IFOS *A* in IFTS (X,τ) is called an intuitionistic fuzzy closed set (IFCS in short in *X*).

Definition 2.4[9]

An IFS *A* in an IFTS (X, τ) is said to be an

i) intuitionistic fuzzy α -open set (IF α OS in short) if

 $A \subseteq \operatorname{int}(cl(\operatorname{int}(A))).$

ii) intuitionistic fuzzy α -closed set (IF α CS in short) if $cl(int(cl(A))) \subseteq A$.

The family of all IFCS (resp. IF α CS, IFOS, IF α OS) of an IFTS (*X*, τ) is denoted by IFC(*X*)(resp. IF α C(*X*), IFO(*X*), IF α O(*X*)).

Definition 2.5 [12]

Let *A* be an IFS in an IFTS (X, τ) . Then

```
i) \alpha \operatorname{int}(A) = \bigcup \{ G/G \text{ is an IF}\alpha OS \text{ in } X \text{ and } G \subseteq A \}
```

```
ii) \alpha cl(A) = \bigcap \{ K/K \text{ is an IF} \alpha CS \text{ in } X \text{ and } A \subseteq K \}
```

Definition 2.6[11]

An IFS *A* in an IFTS (X,τ) is said to be an i) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)) ii) intuitionistic fuzzy regular open set(IFROS in short) if A = int(cl(A)) iii) intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and *U* an (IFROS in short) and *U* an IFOS in (X,τ) .

Definition 2.7[4]

An IFS *A* in an IFTS (X, τ) is said to be an

i) The finite union of IF regular open sets is said to be IF π-open.
ii) The complement of IF π- open set is said to be IF π-closed.
Definition 2.8 [10]

An IFS A in (X, τ) is said to be an intuitionistic

fuzzy $\pi g \alpha$ -closed set(IF $\pi G \alpha CS$ in short) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and *U* is an IF πOS in (X, τ) .

Definition 2.9 [10]

An IFS *A* in (*X*, τ) is said to be an intuitionistic fuzzy $\pi g \alpha$ -open set (IF $\pi G \alpha OS$ in short) if the complement A^c is an IF $\pi G \alpha CS$ in

 $(X,\tau).$

Remark 2.10 [10]

Every IFCS, IF α CS, IFRCS, IFGCS is an IF π G α CS, but converses may not true in general.

Remark 2.11

(i) Every IF π OS in (X, τ) is an IFOS in (X, τ) . [8]

(ii) Every IFOS in (X,τ) is an IF α OS in (X,τ) [4]

(iii) Every IF π OS in (*X*, τ) is an IF π GOS. [8]

3. Intuitionistic Fuzzy α - Normal Spaces Definition 3.1

An intuitionistic fuzzy topological space (X, τ) is said to be intuition- istic fuzzy α -normal space (or in short IF α -N) if for every pair of disjoint intuitionistic fuzzy closed sets *A*, there exist two disjoint intuitionistic fuzzy α -open sets (IF α OSs) *U* and *V* such that $A \subseteq U$, $B \subseteq V$.

Theorem 3.2

Let (X, τ) be an intuitionistic fuzzy topological space the following are equivalent :

1) X is an intuitionistic fuzzy α -normal space.

2) For every pair of an intuitionistic fuzzy open sets *U* and *V* whose union is 1_{\sim} there exist intuitionistic fuzzy α -closed sets *A* and *B* such that $A \subseteq U$, $B \subseteq V$ and $A \cup B = 1_{\sim}$.

3) For every intuitionistic fuzzy closed set *H* and every intuitionistic fuzzy open *K* containing *H*, there exists an intuitionistic fuzzy α -open set *U* such that $H \subseteq U \subseteq \alpha - cl(U) \subseteq K$. 4) For every pair of an intuitionistic fuzzy disjoint α -closed sets *H* and *K* of *X* there exists an intuitionistic fuzzy α -open set *U* of *X* such that $H \subseteq U$ and $IF\alpha - cl(U) \cap K = 0_{z}$.

5) For every pair of an intuitionistic fuzzy disjoint α -closed sets *H* and *K* of *X* there exists an intuitionistic fuzzy α -open sets *U* and *V* of *X* such that $H \subseteq U, K \subseteq V$ and $IF\alpha - cl(U) \cap IF\alpha - cl(V) = 0_{\sim}$

Proof

1)⇒2)

Let *U* and *V* be two intuitionistic fuzzy open sets in an IF α normal space *X* such that $U \cup V = 1_{\sim}$. Then U^c , V^c are intuitionistic fuzzy disjoint closed sets. Since *X* is an intuitionistic fuzzy α -normal space there exist intuitionistic fuzzy disjoint α -open sets U_1 and V_1 such that $U^c \subseteq U_1$ and $V^c \subseteq V$. Let $A = U^c_{1,1}, B = V_1^c$. Then *A* and *B* are intuitionistic fuzzy α -closed sets such that $A \subseteq U$, $B \subseteq V$ and $A \cup B = 1_{\sim}$. $2) \Rightarrow 3$

Let *H* be intuitionistic fuzzy closed set and *K* be an intuitionistic fuzzy open set containing *H*. Then H^c and *K* are intuitionistic fuzzy open sets such that $H^c \cup K = 1_{\sim}$. Then by (2) there exist an intuitionistic fuzzy α -closed sets M_1 and M_2 such that $M_1 \subseteq H^c$ and $M_2 \subseteq K$ and $M_1 \cup M_2 = 1_{\sim}$. Thus, we obtain $H \subseteq M_1^c$, $K^c \subseteq M_2^c$, $M_1^c \cap M_2^c = 0_{\sim}$. Let $U = M_1^c$ and $V = M_2^c$. Then *U* and *V* are intuitionistic fuzzy

disjoint α - open sets such that $H \subseteq U \subseteq V^c \subseteq K$. As V^c an intuitionistic fuzzy α -closed set, we have $H \subseteq U \subseteq \alpha - cl(U) \subseteq K$. 3) \Rightarrow 4)

Let *H* and *K* be disjoint IF α -closed set of *X*. Then $H \subseteq K^c$ where K^c is IF α -open. By the part(3), there exist a IF α -open subset *U* of *X* such that $H \subseteq U \subseteq \alpha - cl(U) \subseteq K^c$. Thus $IF \alpha cl(U) \cap K = 0_{\sim}$. (4) \Rightarrow 5)

Let *H* and *K* be any disjoint IF α -closed set of *X*. Then by the part (4) there exist a IF α -open set*U* containing *H* such that $IF\alpha cl(U) \cap K = 0_{\alpha}$. Since $IF\alpha cl(U)$ is an IF α -closed, then it is IF α -closed .Thus $IF\alpha cl(U)$ and *K* are disjoint IF α -closed sets of *X*. Again by the part (4), there exists a IF α -open set *V* in *X* such that $K \subseteq V$ and $IF\alpha cl(U) \cap IF\alpha cl(V) = 0_{\alpha}$. $5) \Rightarrow 1$

Let *H* and *K* be any disjoint IF α -closed sets of *X*. Then by the part 5). There exist IF α -open sets *U* and *V* such that $H \subseteq U, K \subseteq V$, and $IF\alpha cl(U) \cap IF\alpha cl(V) = 0_{\sim}$. Therefore, we obtain that $U \cap V = 0_{\sim}$. Hence *X* is IF α - normal space.

Definition 3.3[5]

An IF function $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be :

- 1) Intuitionistic fuzzy pre-continuous function if $f^{-1}(B) \in IFPO(X)$ for every $B \in \sigma$.
- 2) Intuitionistic fuzzy α -continuous function $f^{-1}(B) \in IF\alpha O(X)$ for every $B \in \sigma$.

3) Intuitionistic fuzzy α -open function (IF αO function for short) if f(A) is an *IF\alpha OS* in *Y* for each *IFOS A* in *X*.

Definition 3.4

An IF function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be:

- 1) IF pre α -open if $f(U) \in IF\alpha O(Y)$ for each $U \in IF\alpha O(X)$.
- 2) IF pre α -closed if $f(U) \in IF\alpha C(Y)$ for each $U \in IF\alpha C(X)$.

3) IF almost α -irresolute if for each IF point $x(\alpha, \beta)$ in X and each IF α -neighbourhood V of f(x), $\alpha - cl(f^{-1}(V))$ is an IF α -neighbourhood of $x(\alpha, \beta)$.

Theorem 3.5

A surjective function $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy pre α -open continuous almost α -irresolute function from an intuitionistic fuzzy α -normal space (X,τ) onto (Y,σ) . Then (Y,σ) is an intuitionistic fuzzy α -normal space.

Proof

Let *A* be an intuitionistic fuzzy closed set of *Y* and *B* an intuitionistic fuzzy open set of *Y* containing *A*. Then since *f* is continuous $f^{-1}(A)$ and $f^{-1}(B)$ are intuitionistic fuzzy closed (respt. open) in *X* such that $f^{-1}(A)$ and $f^{-1}(B)$. Since *X* is an intuitionistic fuzzy α - normal there exists an intuitionistic fuzzy α -open set *U* in *X* such that $f^{-1}(A) \subseteq U \subseteq \alpha - cl(U) \subseteq f^{-1}(B)$, by theorem $(3.2)(f^{-1}(A)) \subseteq f(U) \subseteq f(\alpha - cl(U)) \subseteq f(f^{-1}(B))$. Since

f is an intutionistic fuzzy pre α -open almost α -irresolute-surjection function, we obtain

 $A \subseteq f(U) \subseteq \alpha - cl(f(U)) \subseteq B$. Then again by theorem (3.2). The space

 (Y, σ) is intuitionistic fuzzy α -normal space.

Theorem 3.6

A function $f:(X,\tau) \to (Y,\sigma)$ is an

intuitionistic fuzzy pre α -closed function if and only if for each intuitionistic fuzzy set *A* in *Y* and for each intuitionistic fuzzy α open set *U* in *X* containing $f^{-1}(A)$ there exist an intuitionistic fuzzy α -open set *V* of *Y* containing *A* such that $f^{-1}(V) \subseteq U$.

Theorem

3.7

Let $f: (X, \tau) \to (Y, \sigma)$ be an

intuitionistic fuzzy pre α -closed continuous function from an intuitionistic fuzzy α -normal space *X* onto a space *Y*, then *Y* is an intuitionistic fuzzy α -normal space.

proof

Let M_1 and M_2 are intuitionistic fuzzy disjoint closed sets in $Y f^{-1}(M_1)$ and $f^{-1}(M_2)$ are intuitionistic fuzzy closed sets in X. Since X is an intuitionistic fuzzy α -normal space, there exist disjoint intuitionistic fuzzy α -open sets U and V such that $f^{-1}(M_1) \subseteq U$ and $f^{-1}(M_2) \subseteq V$. By theorem(3.6) there exist an intuitionistic fuzzy α -open sets A and B such that $M_1 \subseteq A$ and $M_2 \subseteq B$, $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Also A and B are disjoint . Thus Y is an intuitionistic fuzzy α -normal space. **Definition 3.8**

An intuitionistic fuzzy function

 $f:(X,\tau) \to (Y,\sigma)$ is said to be α -closed if f(U) is an IF α -closed set in *Y* for each closed set *U* in *X*.

Theorem

3.9

Let $f:(X,\tau) \to (Y,\sigma)$ be an nuitionistic fuzzy α -closed continuous surjection and *X* is an intuitionistic fuzzy normal, then *Y* is α -normal space.

Proof

Let *A* and *B* be an intuitionistic fuzzy disjoint closed sets in *Y*.

Since *f* is continuous then $f^{-1}(A)$ and $f^{-1}(B)$ are intuitionistic fuzzy disjoint closed sets in *X*. As *X* is an intuitionistic fuzzy normal, there exist intuitionistic fuzzy disjoint open sets *U* and*V* in *X* such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Then there are intuitionistic fuzzy disjoint open sets *G* and *H* in *Y* such that $A \subseteq G$ and $B \subseteq H$. Since every intuitionistic fuzzy open set is α -open, *G* and *H* are intuitionistic fuzzy disjoint α -open sets containing *A* and *B*, respectively. Therefore *Y* is an intuitionistic fuzzy α normal.

4. Intuitionistic Fuzzy $\pi g \alpha$ - Normal Spaces

In this section, we introduce the notion of IF $\pi g \alpha$ -normal space and study some of its properties.

Definition

4.1

An IF topological space *X* is said to be IF $\pi g \alpha$ normal if for every pair of disjoint IF $\pi g \alpha$ -closed subsets *A* and *B*

of *X*, there exist disjoint IF α -open sets *U* and *V* of *X* such that $A \subseteq U$ and $B \subseteq V$.

Theorem 4.2

For an intuitionistic fuzzy topological space (X, τ) the following are equivalent:

(1) X is $\pi g \alpha$ -normal.

(2) for any pair of intuitionistic fuzzy disjoint $\pi g \alpha$ -open sets *U* and *V* of *X* there exist disjoint $\pi g \alpha$ -closed sets *A* and *B* of *X* such that $A \subseteq U$ and $B \subseteq V$ and $U \cup V = X$.

(3) for each IF $\pi g \alpha$ -closed set *A* and an IF $\pi g \alpha$ -open set *B* containing *A* there exists a IF α -open set *U* such that

 $A \subseteq U \subseteq IF\alpha - cl(U) \subseteq B.$

(4) for any pair of intuitionistic fuzzy disjoint $\pi g \alpha$ -closed sets *A* and *B* of *X* there exists a IF α -open set *U* of *X* such that $A \subseteq U$ and $IF\alpha - cl(U) \cap B = 0_{\sim}$.

(5) for any pair of intuitionistic fuzzy disjoint $\pi g \alpha$ -closed sets *A* and *B* of

X there exists a IF α -open sets *U* and *V* of *X* such that $A \subseteq U$ and $B \subseteq V$ IF $\alpha - cl(U) \cap IF \alpha - cl(V) = 0_{\sim}$.

Proof

1)⇒2)

Let U and V be two intuitionistic fuzzy $\pi g \alpha$ -open sets in an IF $\pi g \alpha$ - normal space X such that $U \cup V = 1_{\sim}$. Then U^c , V^c are intuitionistic fuzzy disjoint $\pi g \alpha$ - closed sets. Since X is an intuitionistic fuzzy $\pi g \alpha$ - normal space there exist intuitionistic fuzzy disjoint α -open sets U_1 and V_1 such that $U^c \subseteq U_1$ and $V^c \subseteq V_1$. Let $A = U_1^c$, $B = V_1^c$. Then *A* and *B* are intuitionistic fuzzy α closed sets such that $A \subseteq U$, $B \subseteq V$ and $A \bigcup B = 1_{\sim}$. 2) \Rightarrow 3)

Let *H* be intuitionistic fuzzy $\pi g \alpha$ - closed set and *K* be an intuitionistic fuzzy $\pi g \alpha$ -open set containing *H*. Then H^c and *K* are intuitionistic fuzzy $\pi g \alpha$ -open sets such that $H^c \cup K = 1_{\sim}$. Then by (2) there exist an intuitionistic fuzzy α -closed sets M_1 and M_2 such that $M_1 \subseteq H^c$ and $M_2 \subseteq K$ and $M_1 \cup M_2 = 1_{\sim}$. Thus we obtain $H \subseteq M_1^c$, $K^c \subseteq M_2^c$ and $M_1^c \cap M_2^c = 0_{\sim}$.

Let $U = M_1^c$ and $V = M_2^c$. Then U and V are intuitionistic fuzzy disjoint α -open sets such that $H \subseteq U \subseteq V^c \subseteq K$. As V^c an intuitionistic fuzzy α -closed set, we have $H \subseteq U \subseteq \alpha - cl(U) \subseteq K$. 3) \Rightarrow 4)

Let *H* and *K* be disjoint IF $\pi g \alpha$ -closed set of *X*. Then $H \subseteq K^c$ where K^c is IF $\pi g \alpha$ -open. By the part(3), there exist a IF α -open subset *U* of *X* such that $H \subseteq U \subseteq \alpha - cl(U) \subseteq K^c$. Thus $IF \alpha cl(U) \cap k = 0_{\sim}$. 4) $\Rightarrow 5$)

Let *H* and *K* be any disjoint IF $\pi g \alpha$ -closed set of *X*. Then by the part (4), there exist a IF α -open set *U* containing *H* such that $IF \alpha cl(U) \cap k = 0_{\sim}$. Since $IF \alpha cl(U)$ is an IF α -closed, then it is IF $\pi g \alpha$ -closed. Thus $IF \alpha cl(U)$ and *K* are disjoint IF $\pi g \alpha$ -closed sets of *X*. Again by the part (4), there exist a IF α -open set *V* in *X* such that $K \subseteq V$ and $IF \alpha cl(U) \cap IF \alpha cl(V) = 0_{\sim}$. $5) \Rightarrow 1$

Let *H* and *K* be any disjoint IF $\pi g \alpha$ -closed sets of *X*. Then by

the part (5), there exist IF α -open sets *U* and *V* such that $H \subseteq U, K \subseteq V$, and

 $IFacl(U) \cap IFacl(V) = 0_{\sim}$. Therefore we obtain that $U \cap V = 0_{\sim}$.

Hence *x* is IF $\pi g \alpha$ - normal space.

Lemma 4.3

a) The image of IF α -open subset under an IF- open continuous function is IF α -open subset.

b) The image of IF α -open subset under an open continuous function is IF α -open subset.

Lemma 4.4

The image of IF regular open subset under an open and closed continuous function is IF regular open subset.

Lemma 4.5 [5]

The image of IF α -open subset under IF- open and IF-

closed continuous function is IF α -open subset.

Theorem

4.6

If

 $f: X \to Y$ be an IF-open and IF-closed continuous bijection function and *A* be a IF $\pi g \alpha$ -closed set in *Y*, then $f^{-1}(A)$ is IF $\pi g \alpha$ -closed set in *X*.

Proof

Let A be an $\pi g \alpha$ -closed set in Y

and U be any IF π -open set of

X such that $f^{-1}(A) \subseteq U$. Then by lemma (4.5), we have f(U) is IF π - open set of *Y* such that $A \subseteq f(U)$. Since *A* is an IF $\pi g \alpha$ - closed set of *Y* and f(U) is IF π - open set in *Y*. Thus IF $\alpha cl(A) \subseteq U$

. By lemma (4.3) we obtain that $f^{-1}(A) \subseteq f^{-1}(IF\alpha - cl(A)) \subseteq U$, where $f^{-1}(IF\alpha - cl(A))$ is α -closed in *X*. This implies that IF $\alpha - cl(f^{-1}(A)) \subseteq U$. Therefore $f^{-1}(A)$ is IF $\pi g \alpha$ -closed set in *X*. **Theorem 4.7**

If $f: X \to Y$ be an IF-open and IF-closed continuous bijection function and X be a IF $\pi g \alpha$ -normal space, then Y is IF $\pi g \alpha$ -normal space.

Proof

Let *A* and *B* be any disjoint $\pi g \alpha$ -closed set in *Y*. Then by theorem

(4.6) $f^{-1}(A)$ and $f^{-1}(B)$, are disjoint of IF $\pi g \alpha$ -closed set in X. By IF

 $\pi g \alpha$ -normality of X, there exist IF α -open subsets U and V of X such

that $f^{-1}(A) \subseteq U$, $f^{-1}(B) \subseteq V$ and $U \cap V = 0_{\sim}$. By assumption, we have $A \subseteq f(U)$, $B \subseteq f(V)$ and $f(U) \cap f(V) = 0_{\sim}$. By lemma (4.3)

f(U) and f(V) are disjoint IF α -open set of Y such that

 $A \subseteq f(U)$, $B \subseteq f(V)$. Hence *Y* is IF $\pi g \alpha$ -normal space.

5. IF $\pi g \alpha$ -normality in subspaces

Lemma 5.1 [5]

If *M* be a IF π -open subspace of a space *X* and *U* be an IF π -open subset of *X*, then $U \cap M$ is IF π -open set in *M*.

Lemma 5.2

If A is both IF π -open and IF $\pi g \alpha$ -closed subset of a space X, then A is an IF α -closed set in X.

Proof

Since *A* is both IF π -open and IF $\pi g \alpha$ -closed subset of a space *X* and since $A \subseteq A$, then *IF* $\alpha cl(A) \subseteq A$. But $A \subseteq IF \alpha cl(A)$. Then $A = IF \alpha cl(A)$

Hence A is an IF α -closed set in X.

corollary 5.3.

If A is both IF π -open and IF $\pi g \alpha$ -closed subset of a space X, then A is an IF α regular-closed set in X.

Theorem 5.4

Let *M* be an IF π -open subspace of a space *X* and $A \subseteq M$. If *M* is an IF $\pi g \alpha$ -closed subset of a space *X* and *A* is an IF $\pi g \alpha$ -closed subset of *M*. Then *A* is an IF $\pi g \alpha$ -closed subset of *X*.

Lemma 5.5

Let *M* be an intuitionistic fuzzy closed domain subspace of a space *X*. If *U* is an IF α -open set in *X*, then $U \cap M$ is an IF α -open set in *M*.

Theorem 5.6

An intuitionistic fuzzy $\pi g \alpha$ -closed and IF π -open subspace of an intuitionistic fuzzy $\pi g \alpha$ -normal space is an intuitionistic fuzzy $\pi g \alpha$ -normal.

Proof

Suppose that *M* is an IF $\pi g \alpha$ -closed and IF π -open subspace of

an intuitionistic fuzzy $\pi g \alpha$ –normal space *X*. Let *A* and *B* be any intuitionistic fuzzy disjoint $\pi g \alpha$ -closed subsets of *M*. Then by theorem (5.4), we have *A* and *B* are intuitionistic fuzzy disjoint $\pi g \alpha$ -closed sets in *X*. By intuitionistic fuzzy $\pi g \alpha$ –normality of

X, there exist ntuitionistic fuzzy α -open subsets *U* and *V* of such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = 0_{\sim}$.

By corollary (5.3) and lemma (5.5), we obtain that $U \cap M$ and $V \cap M$

are intuitionistic fuzzy disjoint α -open sets in M such that $A \subseteq U \cap M$ and $B \subseteq V \cap M$. Hence, M is an intuitionistic fuzzy $\pi g \alpha$ -normal subspace of intuitionistic fuzzy $\pi g \alpha$ -normal space X.

References

[1] Atanassov K. *Intuitionistic Fuzzy Sets*, Fuzzy Sets Systems, 20 (1986), 87-96.

[2] Abd El-Monsef M.E, Koze A.M, Salama A. A and Elagamy H, *Fuzzy Biotopological Ideals Theory*, IOSR Journal of computer Engineering (IOSRJCE), vol. (6), Issue 4, (2012) pp 1-5.

- [3] Chang C. L. Fuzzy Topological Spaces, J. Math. Anal .Appl, 24 (1968), 182-190.
- [4] Coker D. An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy sets and systems, 88 (1997), 81-89.
- [5] Gurcay H., Coker D. and Haydar A. Es, On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces, The J. Fuzzy Mathematics, (1997), 365-378.
- [6] Jeon J. K., Jun. Y. B, and Park J. H. *Intuitionistic Fuzzy Alpha Continuity and Intuitionistic Fuzzy Pre Continuity*, International
- Journal of Mathematics and Mathematical Sciences, 19 (2005), 3091-3101.
- [7] Lupianez F. G, *Separation in Intuitionistic Fuzzy Topological Spaces*, International Journal of Pure and Applied Mathematics, 17 (2004), no. 1, 29-34.

[8] Maragathav A. S. and Ramesh K. *Intuitionistic Fuzzy* π - *Generalized Semi Closed Sets*, Advances in Theoretical and Applied Sciences,1 (2012) 33-42.

[9] Sakthivel K., *Intuitionistic Fuzzy Alpha Generalized Continuous Mappings and Intuitionistic Fuzzy Alpha Irresolute Mappings*, App. Math. Sci., 4 (2010), 1831-1842

[10] Seenivasagan N. Ravi O. and Kanna S. S. $\pi g \alpha$ *Closed Sets Intuitionistic Fuzzy Topological Spaces*, International journal of mathematical Archive, 3 (2015), 65-74.

[11] Thakur S.S. and Chaturvedi. R , *Regular Generalized- Closed Sets in Intuitionistic Fuzzy Topological Spaces*, Universitatea Din Bacau Studii SiCercertari Stiintifice, 6 (2006), 257-272

[12] Zadeh L. A. Fuzzy sets, Information and control, 8 (1965), 338-353.