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Abstract

In This work presents the basic general theory for sequential
linear fractional differential equations, involving the well-known
Riemann-Liouville fractional operators.

We then introduce the Mittag-Leffler type function e}* |
which we will call a- exponential. This function is the product
of a Mittag-Leffler function and a power function. This function
allows us to directly obtain the general solution to homogeneous and
non-homogeneous linear fractional differential equations with
constant coefficients. This method is a variation of the usual one for
the ordinary case.
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1. Introduction
Fractional calculus was introduced on September 30, 1695.

On that day, Leibniz wrote a letter to L’Hopital , raising the
possibility of generalizing the meaning of derivatives from integer
order to noninteger order derivatives

L’Hopital wanted to know the result for the derivative of
order n = 1/2. Leibniz replied that “one day, useful consequences will
be drawn” and, in fact, his vision became a reality. However, the study
of noninteger order derivatives did not appear in the literature until
1819, when Lacroix presented a definition of fractional derivative
based on the usual expression for the nth derivative of the power
function (Lacroix 1819). Within years the fractional calculus became a
very attractive subject to mathematicians, and many different forms of
fractional (i.e., noninteger) differential operators were introduced: the
Grunwald-Letnikow, Riemann-Liouville, Hadamard, Caputo, Riesz
(Hilfer 2000; Kilbas et al. 2006; Podlubny 1999; Samko et al. 1993)
and the more recent notions of Cresson (2007), Katugampola (2011),
Klimek (2005), Kilbas and Saigo (2004) or variable order fractional
operators introduced by Samko and Ross (1993) .

In 2010, an interesting perspective to the subject, unifying all
mentioned notions of fractional derivatives and integrals, was
introduced in Agrawal (2010) and later studied in Bourdin et al.
(2014), Klimek and Lupa (2013), Odzijewicz et al. (2012a, b, 2013a,
b, c). Precisely, authors considered general operators, which by
choosing special kernels, reduce to the standard fractional operators.

It is known that the classical calculus provides a powerful
tool for explaining and modelling many important dynamic processes
in most applied sciences.
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But experiments and reality teach us that there are many
complex systems in nature and society with anomalous dynamics,
such as charge transport in amorphous semiconductors, the spread of
contaminants in underground water, relaxation in viscoelastic
materials like polymers, the diffusion of pollution in the atmosphere,
and many more.

In most of the above-mentioned cases, this kind of
anomalous process has a complex macroscopic behavior, the
dynamics of which cannot be characterised by classical derivative
models. Nevertheless, a heuristic solution to the corresponding models
of some of those processes can be frequently obtained using tools
from statistical physics. For such an explanation, one must use some
generalized concepts from classical physics such as fractional
Brownian motion, the continuous time random walk (CTRW) method
involving L’evy stable distributions (instead of Gaussian
distributions), the generalized central limit theorem (instead of the
classical central limit theorem), and non Markovian distributions
which means non-local distributions (instead of the classical
Markovian ones). From this approach it is also important to note that
the anomalous behavior of many complex processes includes

multi-scaling in the time and space variables .

The above-mentioned tools have been used extensively
during last 30 years. But the connection between these statistical
models and certain fractional differential equations involving the
fractional integral and derivative operators (Riemann-Liouville,
Caputo, Liouville or Weyl, Riesz, etc.; see [11]) has only been
formally established during the last 15 years; (see, for instance, [7],
[6] [12], [10]).

We could ask to our self, what are the useful properties of
these fractional calculus operators which help in the modelling of so
many anomalous processes? From the point of view of the authors and
from known experimental results, most of the processes associated
with complex systems have non-local dynamics involving long-
memory in time, and the fractional integral and fractional derivative
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operators do have some of those characteristics. Perhaps this is one of
the reasons why these fractional calculus operators lose the above-
mentioned useful properties of the ordinary derivative D.

This work is organized as follows. Sections 2 present some
fractional operators and their main properties and introduce some
types of Mittag-Leffler functions. In Section 3 we develop a general
theory for sequential linear fractional differential equations, while in
Section 4 we introduce upgraded direct method for solving the
homogeneous and non-homogeneous case with constant coefficients,
using the a-exponential function and certain fractional Green
functions, including some illustrative examples.

2. Preliminaries

Definition 2.1. Let R = (—o,) and R, = (0,). We
denote the space of function f by CI[0,T], where f satisfies
f:(0,T]-R(VT >0)and t"f™(x) e C[0,T] for 0 <r < 1.In
particular, denote C2[0,T] by C,.[0,T].

Definition 2.2 . [2] Let a€R,,f €C.[0,T[,0<r<1.
Then

IS = 7z [y =0 f©dE (x> @) ,
)

is called a fractional integral of order a (a > 0) of the
function f in the sense of Riemann— Liouville. In particular, we
denote I°f(x) = f(x) .

Definition 23 . [2] Let n—1<a<nneN,["*f€
C/[0,T] and 0 <y <1.Then

DESf(x) = DM I"f (), pn =2

T dxn
(2)

is called the fractional derivative of order o of the function f in
the sense of Riemann— Liouville.
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Let us remember that, in general, when «,8 € R*, the

operators D(‘)”ﬁ and D¢ Df are different. Also, as usual, we will use
AC ([a,b]) to refer to the set of absolutely continuous functions in
[a,b], and AC™([a,b]) (n € N), for the set of functions f, such
that there exist (D™)(f) = f™ in[a,b] and f™ € AC .

Definition 2.4 [2] Let n—1l1<a<nneN,I"%*e
CH[0,T],0 <r < 1.Then

D§, [£ 00 - Tpza Lo at]
is called the Caputo fractional derlvatlve of order a of the
function f .
Remark When a =n,wehave °D§, f(t) = D§ f(t) =
D™ f(©).
Definition 2.5 . Let 4, v €C, «a € Rt and a € R. We will
call a-exponential function ei(x"a) the Mittag-Leffler type function

Alx— 1w Ax-a)ke
ea(x a) _ (x — a)¥ 1Zk=0m (x > a). (3)

Definition 2.6. Let a€R*,l€N,,a€R and A=b+

ic e C.Wewill call ei’; the Mittag-Leffler type function

k
Ax—a) _ _ Na-1 (1+k)! (Ax-a)%)
Cal = (- )" D O I[(k+1+1)a] k! (x> a). (4)

Property 2.1. Let n—1<a<n m-1<g<m. If
f € Li(a,b) with f,_g€AC™* ' ([a,b]) if a+B<n (or
fia+p) € AC**B([a,b]) if a+ B >n), where f,_, = (I%%f)(x).
Then we have the following rule
(pg.0%, £) 0 = (DEFF £) 0 - 2ty (P87 1) (e 52— )

almost everywhere in [a, b].

Property 2.2. Let 0<n<1, (D], K)€L(ab) witha
suitable f (for example, f € C([a, b]). Then we have
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DI [TK(x—)f®dt = [ [DI, K(x — a)|(O)f (x — t +
a)dt + () limg+[I;7"K (¢ — )] (x). (6)
As expected, a fractional differential equation of order an is an
equation such as
F(x, y(x), D*y)(x), (D*2y) (x), ..., (D™y) (x)) =
g(x), (7)
with a; <a, < < a,, F(x,y4,...,y) and  g(x) known
real functions, D%
(k =1,2,..,n) fractional differential operators and where
y(x) is the unknown function.
In 1993 Miller-Ross [8] introduced the so called sequential
fractional derivative D¢ in the following way
D*=D% (0<a<1)
pke = papk-Da (=23 ), (8)
where D¢ is a fractional derivative.
A sequential fractional differential equation of order na has
the following relationship
F(x,y(x), (Dy) (%), (D**y) (%), ..., (D"*y)(x)) = g(x)  (9)

Let D*=Dg.  be the Riemann-Liouville fractional
derivative. Then, taking into account Property 1, we can obtain the
relation between DJ¢ and D} .

When n = 2 such relation is given by

(D& VG = D2 [y() — U @ HS—]  (10)
On the other hand, if « =§ (m,p €N) and y(x) is a

continuous real function defined in [a, b], thatis y € ([a, b]), we can
deduce from Property 1 the important property: (D™ y)(t) =
(DPEy)(©®). (t>a) (11)

In this work we study the linear sequential fractional
differential equations of order na which can be written in the
following normalized form
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Lna(y) = [DF¢ + X3=5 ax ()DEEI () = y @ + XRZ5 ay (x)y e =
f,  (12)

where {a,(x)}?Z5 are continuous real functions defined in an
interval [a,b] c Rand f(x) € C([a,b]) or f(x) € C((a,b]).

The existence and uniqueness of solutions to the Cauchy

type problem for fractional differential equation (12) was established
in [3], [4], and [10] for different kinds of functional spaces. We
present below two of the theorems which will be used in this work.

Theorem 2.1. Let x, € (a,b) € R and {yX}izi € R™. Let
f(x) and {a;(x)}?Z} be continuous real functions in [a, b]. Then
there exists a unique continuous function y(x) defined in (a, b] which
is a solution to the Cauchy type problem

[Lna(](x) = f(x) (13)
(DEE ¥ (x0) = y*¥(xo) =y (k=101,..,n—1), (14)
Moreover, this solution y(x) satisfies
limy 44 (x — a)t~* y(x) < o, (15)
and
(Ia5%y) (x) < oo. (16)

We denote with C, ([a, b]) (¥ € R) the Banach space
Cy([a,b]) = {g(x) € C([a,b]): ligllc, = I(x — @)’ g(X)llc < oo},
(17)

In particular Cy([a, b]) = C([a,b]).

Theorem 2.2. Let {a,(x)}}=5 be continuous functions in
[a,b], f € Ci_a([a,b]) and

{be}iZ3 € R™. Then there exists a unique continuous
function y(x) defined in (a, b] which is a solution to the linear
sequential fractional differential equation of order na

[Lna()](x) = f(x) (18)

And such that

limy,q4 (x — @)% (DEF ¥) (x) = by (19)
or such that(12:% D¥¢ y)(a +) = by. (20)

Corollary 2.1. Let x, € (a,b], (or xo = a). Let {a;(x)}F=5
be continuous real functions defined in (a,b] and such that (x —
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a)™% a, (%) eq < ©Vk=12,..,n. The homogeneous linear
sequential fractional differential equation

[Lna()](x) =0 (21)

has y(x) = 0 as the unique solution in (a, b], satisfying the
initial conditions
YU x) =0 ([(x—a)-9y*a()] _ =0) (k=01,..,n-1).

3-General theory for linear fractional differential
equations

In this section we study the solutions to a homogeneous
linear sequential fractional differential equation

Lue) = [DZ§ + P23 a, () DEF 1) = y ™ +

oar(x) y*e =0, (22

where {a,(x)}?=¢ are continuous real functions in [a, b] and
[D2¢](y) = y™* is the sequential Riemann-Liouville fractional
derivative.

Definition 3.1. As usual, a fundamental set of solutions to
equation (22) in some interval V c [a,b] is a set of n functions
linearly independent in VV,which are solution to (22).

Definition 3.2. The a-Wronskian of the n functions
{u, (x)}i=1 , which admit iterated fractional derivatives up to order
(n—1)a in some interval V c [a,b], refers to the following
determinant

|Wa(u1, L] un)(x)l =

uq (x) u,(x) ... ... U, (x)

uia (x) uga (x) o e u,(qa (x)

u§2a(x) ugza(x) u,(fa(x) . (23)
A i I

To simplify the notation, this will be represented by
(W, ()| = [W,(uyq, ..., up)(x)] . We will use W,(x) for the
corresponding Wronskian matrix.
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Theorem 3.1. Let {u(x)};=, be a family of functions with
sequential fractional derivatives up to order (n —1)a in (a,b] and
such that,if j =1,2,...,n and k=0,1,..,n—1

limx_,a+[(x —aq)l~¢ u}ka(x)] < o0, (24)
If the functions {(x—a)t™® uj(x)};l=1 are linearly

dependent in [a, b] , it follows that for all x € [a, b]
(x — )" [Wp(x)| = 0. (25)
We can complete the above result, as in the ordinary case,
with the following theorem .
Theorem 3.2. Let {ug(x)};=, be a solution family of
functions to equation (22) in (a, b] which satisfies
lim [(x — @)™ u(x)] < o (j=12,..,n).
x->a+
Then the functions
{x—a)* y (x)}?=1
are linearly dependent in [a, b] if, and only if, there exists an
Xo € [a, b] such that
[(x —a)™ |Wa(x)|]x=xo =0 (26)

From the above theorem we can always find, in a way
similar to the ordinary case , a fundamental set of solutions for
equation (22) in some interval V c [a,b] .

Usually, the general solution to a non-homogeneous linear
sequential fractional differential equation
Lna(y) = f(x) . (27)
will be given as in the following proposition:
Proposition 3.1. If y,(x) is a particular solution to (27) and
yn(x) is a general solution to the corresponding homogeneous
equation

Lna(y) = 0. (28)
That is,
Yr(x) = Xk=1 i (%), (29)
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with  {cy}p=, arbitrary real constants and {u,(x)}p=; a
fundamental set of (28), then a general solution to the non-
homogeneous equation (27) is

yg(x) = yh(x) + yp(x)a (30)

A general theory , similar to the above, can be established for
the Caputo fractional derivative D¢ = “D&, , which was introduced
by Caputo in 1969, see, for instance, [1].

(‘D& f)(x) =UR*D" f)(x) (x>a and n=
—[—aD. (31)

Also it is usual to consider the following, more general,
definition for the Caputo fractional derivative
(D& ) = D& [Fe) - fP@ =2, (32)

which shows the close connection between the Caputo and the
RiemannLiouville derivatives.

4-Linear sequential fractional differential equations with

constant coefficients

In this section we present a direct method for obtaining the
explicit general solution to a linear sequential fractional differential
equation with constant coefficients, such as

Lua(y) = [DF¢ + XiZp ax DEF 1(v) = £ (), (33)
where a and {a,(x)}?Z3 are real constants and DX¢ is the
Riemann-Liouville sequential fractional derivative.

Several approaches have been developed for obtaining
explicit solutions to some of these types of equations. The Laplace
method was discussed by some authors, see, for instance, [8], [1], and
[10] , but this approach is applicable only if a =0 . With the
restriction O, it is not possible to consider Cauchy type problems for
equation (33) with conditions at x = 0 . On the other hand, the direct
method is very convenient for studying and solving boundary value
problems associated with equation (33) which cannot be solved by the
Laplace method. At the end, we will introduce a fractional Green
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function to obtain an explicit particular solution to the non-
homogeneous equation (33).
Let us consider now the corresponding homogeneous
equation to (33)
Lua() = [D¥ + T34 ax DEC 1) = 0. (34)
As in the ordinary case, if we try to find solutions to (34) of

the type y(x) = X% it follows that

Lna(ea®”) = Bu(We™ (35)
where
P,(A) = A" + YRl ap Ak, (36)

is referred to as the characteristic polynomial associated with
equation (34).
In the following it will be assumed that 1 € C .
By the use of the properties of the a-exponential function,
we obtain the following result .
Lemma 4.1. If 4 is a root of characteristic polynomial (36),

then
a 20— 3 [ Alx—
2 Lna(ea(x a)) = Lpg a(ea(x a)) (37)
And
l
% eM=a) = (x — g)la ei'(lx_a) . (38)

So we can connect the solution of the characteristic
polynomial (36) with solutions of (34) as in the usual case

Theorem 4.1. Let {1;}
characteristic polynomial (36) , whose orders of multiplicity are

;{:1 be all different real roots of the
k - _\P .
{uj}jzl, respectively . Let {rj,rj}j=1 (ry=b; +ic))  be all
distinct pairs of complex conjugate solutions of multiplicity
{aj}?zl, respectively, of (36). Then the union set of the sets

Alx— Um—1
Ubr{ G- @)@ )52} ™ (39)
=1
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w ) Tznj ) bm _ O'm—l
U {Ea(-1)) 22 (x = @@+ olns ”}l_l (40)
and

p o j it @Cj+i+Da bmx-a) om
Um=1{ j=o(=1) m(x—a) 8a,l+2j+1}l_1 (41

determines a fundamental system of solutions to fractional
differential equation (34).

Note that only for the case where a = 0 can operational
methods such as the Laplace transform be applied to solve the
problem of constant coefficients.

Example 4.1. Let us consider the equation
D¢ y+ A%y =0, (42)

Its characteristic  equation is P,(x) =x%?+ A% =

(x — Ai)(x + Ai) and so the fundamental set of solutions to (42) is
{cosq[A(x — a)], sing[A(x —a)] },

Where
_ =y (_1)J (2j+1) x—a)UtD2a-1
cosq[A(x — a)] = XiLo(—1)) 4 o )
and
. 0 . (x— )(2j+1)a_1
sing[A(x — )] = (-1 2% ST (a4)

These new functions sin,(x) and cos,(x) are a
generalization of the usual cos(x) and sin(x).

Since now we know how to obtain the general solution to
homogeneous equation (34), then, in accordance with Proposition 4.1,
to obtain the explicit general solution to (33) we only need to get a
particular solution to (33).

First of all we will obtain the general solution to the simpler
equation
y@-y=f(x) (x>a) (45)
where y@ =Dg y.
Proposition 4.1 . Let f € L;(a,b)nC[(a,b)]. Then
equation (45) admits
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Yy =cet ™ +y, (46)
as a general solution in which
Yp = eg" x* f(x), (47)

Is a particular solution to (45), with *% being the following
convolution

g+ f(x) = [ glx — )f (B)dt. (48)
In addition, y,(a+)=0, if f(x)€C([ab]) and

(I13+% yp) (a+) = 0,if f(x) € Ci_o([a,b]).
Theorem 4.2. A particular solution to equation (33) is given

by
Yp = Ga(x) ** f(x) (49)
where G,(x) is
G, (x) = ;c:l*a( ;’il*a ei(x—a)) (50)

where {Aj};(:l are the k distinct complex roots of the

characteristic polynomial (36) with multiplicity {aj}j:l ,

respectively.

In addition, y,(a+) =0 if f(x)eC(ab]) and
(Ix%y,)@a+) =0 if f(x) € Ci_o([a,b]). Moreover
(I3 G)(a+) =0.

Remark 4.1. Since function G,(x — &) plays the role of
Green’s function associated with non-homogeneous equation (33),
analogous to the usual case, this function will be called Riemann-
Liouville fractional Green’s function.

Remark 4.2. Analogous results can be obtained if we consider
the Caputo fractional derivative (31) or (32) instead of the Riemann-
Liouville fractional derivative, by using the Mittag-Leffler function

o A(x—a)kx

E,(AM(x—a)) = Zk=0 T(arr
Alx—a)

instead of the a-exponential function e,
Example 4.2. Let us consider the equation

(a>0) (51)
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D24y + %2y =0. (52)
Its corresponding characteristic polynomial is P,(x) =
x? + 2% and so the fundamental set of solutions to (52) is

{cos;,[A(x — a)], sinj[A(x —a)]} (53)
where

cosy[A(x —a)] = Re{E,(A(x — a)*)} (54)
and

sin},[A(x — a)] = Im{E,(A(x — a)®)} (55)

We point out here that the sin},(x) and cos} (x) functions
are a new generalization of the usual cos(x) and sin(x) functions,
which, like the sin,(x) and cos,(x) functions, could play a
fundamental role , for instance, in the development of a fracti- onal
Fourier theory, or of Weierstrass type fractal functions , which are
solutions to elementary fractional differential equations.

In addition, the results previously presented may be applied
to RiemannLiouville non - sequential linear fractional differential
equations . It is possible to prove the following :

Corollary 4.1. Let f € C,_,([a,b]) and ay,a; €R . then
equation

Dify +a;Dgy +agy=f(x) (O<a<1) (56)

has the general solution

y(@) = Gz () + C2(x) + 2,(x0) — 15 (x — ) (57)

where z; (i = 1,2) is a fundamental system of solutions to
the homogeneous sequential fractional differential equation

D% z+aD% z+agz=0, (58)

and

zp(x) = 21(x) %@ 7, (x) ** [f (%) + apCx —a)*~1]  (59)

is a particular solution to the non-homogeneous equation

D% z+aD% z+agz=f(x)+ayClx —a)*? (60)

where C, C; and C, are real constants such that C; + C, =
C if the roots of the characteristic equation of (58) are different, or
C, = C, iftheyarenot.
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Example 4.3. Let 0<a <1 and fe€C,_,([ab]). A
general solution to equation

Diy—-2DG,y+y=f(x) (x>a), (61)

is
(x—

Yg(x) = Ceéx_a) +Ce,, “ +u(x) — % (x —a)*? (62)

C, and C being two arbitrary real constants, and

u() = e s ey Ut [f0) + S (- ], (63)

Example 4.4. The ordinary differential equation

x (t) —a?x(t) = 0, (64)

according to the relation given in (11), may be transformed
into the sequential linear fractional differential equation

DN —a*x(®) =0 (a=3), (65)
whose general solution is
x(t) = Clegt + Cze;at. (66)

Any solution to (64) is included in the family of solutions to
(66) because x(0) < wandso C, = —C; . Then
o 1_(_1)j o) tjata-1
X0 =G I r[(j]+1)a]
which is the well-known general solution to (64).
However, x(t) = e& is a solution to (65) but it is not a
solution to (64).

(67)
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