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Abstract

The main goal of this thesis is to study the two-dimensional quasi-geostrophic
equation. This equation serves as two-dimensional models arising in geophysical fluid
dynamics.

We aim to study the global and local existence and uniqueness result for quasi-

geostrophic equation with initial data ,that is we are interested to study the following system.

1
0,0 +v-V8 + |D|26 =0, (x,t) € R? x [0, 00[
divv =0,
Ole=0 = bo-

The problem is solved in many functional spaces, with small initial data. We will

study the paper [15] and apply these results to our case. More precisely, we will prove the
problem for 6, € B3, with s > % where B3 , is the Besov space given in Chapter Il. Finally,

combining it with the results of [14] and [15].
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General Introduction

1.1 Background and motivation

The two dimensional quasi-geostrophic equation are the form

{ate +v.V0 +|D|*0 =0, (x,t) € R?x[0,00]
divv =0,

(1)

where 6 is the scalar function represents the potential temperature and the parameter

a €[0,1] . The fractional differential operator |D| = (—A)§ is defined by its Fourier
transform
F(Dlv) = [§|F (v),

The 2D velocity field v = (v!, v?) is determined by Riesz transform R;, Vi = 1,2
of 6, that is

( % 019) (—R,6, R,6)
v=|—-7=0,—0 |):= (— , .
ID| " |D| 2nr

The differential operator v - V is defined respectively by
v-V=Y2 v'-0,.

and the operator div v is defined by
2
divv = Z o;v!
i=1

The first equation of (1) serves as a 2D models arising in geophysical fluid dynamic
[20] and the second equation div v = 0, describe the incompressibity of the fluid.
The interesting is to study the global existence results for the initial value problem (I\VVP) for

equation (1) with
Oe=0 = Oo(x), (2)

is specified, that concerned with global existence results for solutions of the (QG),:
0;0 +v-Vo + |D|*6 =0
divv =0 (QG)q
Ol¢=0 = bo-
In addition, note that the problem is only solved with a smallness initial data.

There exist three cases for « in this problem.



(1) Sub critical case a > 1
(2) Critical case @ =1

(3) Super critical case a < 1

In this category, we precise the notation of critical spaces: let 6 be a solution of

1
pl-a

Before going to these cases, let us firstly give the definition of the Besov spaces and

(QG)q and B > 0, then B4 (¢, x) = 0(B*t, Bx) is also solution of (QG),.

Sobolev spaces, see [2] and [6].

Definition of Besov spaces

We say that a function f in the Besov spaces Bj ., if ||f||stj_r < oo, Where

1

r

5, = | D2 180f1,

q
The bloc dyadic operator A, see chapter I1.
Note that we can define also the Sobolev and Holder spaces by
By, =HS, B$.,=C.
We turn now to the cases of a:

Case 1 : Sub critical case (a > 1), the problem of global existence and
uniqueness for arbitrary initial data is established in various function spaces we refer to [10]

Case 2 : Critical case (a = 1), the authors in [9] showed the global existence in
Sobolev space H! under smallness assumption on ||8,]|., but the uniqueness is proved for
initial data in H2. Many other relevant results can be found in [1], [17], [18].

Case 3 : Super-critical case (a < 1), we had only global results for small
initial data. In [5], the global existence and uniqueness are established for data in critical
Besov space BZ7* with a small norm of initial data. This result was improved by [16] for
small initial data in H® ,s = 2 — a. Wu [25] proved the global existence and uniqueness for

small initial data in C" n L4, withr > 1and g € ]1, +oo[, where C" is Holder space.



Also the authors in [26] was established the global well posedness result for small initial data

in BS o N By, With s >2—aandp =2V,

Finally, we mentioned the paper [26], where the authors proved the problem of
existence and uniqueness in this case, that is in the super-critical case (a < 1) with initial

2
1+——a

data in inhomogeneous critical Besov space B, L with p € [1,00].

1.2 Main aims of the thesis

There are numerous study for theses three cases and in a different functional spaces.

In this research, we interested to the study of the last case of «, that is for the super-critical

1

R . . . S+
case (a < 1). Specially, we will prove a smoothing effects on Besov space BZS T E

[1, +o0]. After this, we prove the global existence and uniqueness in B3, (R?), with s > %

and we note that the proof of our results are different from [14], [15] and others references.
Our additions are in the proof of our results. Finally, we combine their results with the results
of [14] and [15].

In this step, we need to recall here the Beal-Kato and Majda criterion which is

the main argument to get global well-posedness results with smooth initial data,
see[3].

Therefore, to obtain the global existence, it suffice to use the BKM criterion, which
allows us to obtain the L* norm of the vorticity w, and then to obtain the Lipchitz norm of the
velocity ||[Vv]| .

This BKM criterion ensuring that the development of finite-time singularity is related

to the blow up of the L* norm of the verticity (w = curlv ), that is

T < +0 1 [l odt = o,

where the vorticity w in dimension two define as the scalar function

w=V.v=0,v%—0,v!.

Our result reads as follows.

Theorem

Let 6y € B3 4,5 > % then there exists T > 0 such that the (QG): equation has a
2

unique solution @ such that



1
. S+=
0 €C([0,T];B5,) NLLE, 2.

In other words, there are exists g > 0, such that ||6,|| 81, < B, therefore we have
T = oo.
We note that in the proof our result, we use some embedding’s between Besov space

and some functional spaces combined with smoothing effects.

1.3 Organisation of the thesis

The objectives of the thesis can be summarized as follows:

In chapter I, we introduce some notations, give the review of functions and
mathematical concepts. Besides, we recall some functional spaces and finally we present
some well-known results.

In chapter 11, we recall some basic results on Littlewood-Paley theory and give the
definition of some functional spaces as Besov space, Holder and Sobolev spaces. Finally, we
give some useful lemma as Bernstein inequality for a tempered distribution u € § (where S is
Schwartz space defined in chapter ).

In chapter 111, we give some useful estimates for any smooth solution of linear
transport-diffusion model given by

0.6 +v-Vo + [D|*6 =f
divv =0 (TD)q
Ot=0 = 6o

we will discuss two kinds of estimates that will be used in the next chapter. The first
is the LP energy estimate, Vp € [1, o]. Second, | will prove a smoothing effects which is the
main result in this chapter.

In chapter IV, we study some results for the super-critical case that is (o < 1). We
prove my main result, and we devised the proof into four steps: a priori estimates, global
existence, local existence and uniqueness of the solution. Finally, we combine the results of
[8], [14] and [15].



Chapter I:
Basic concepts

1.1 Introduction

We will present some notations that will be used later. In addition, we review some
definitions and mathematical concepts for the functions. we illustrate some subjects related to

our work of the thesis and give some well-known results.

1.2 Notations

In this section, we introduce some notations:

1- For any positive A and B, the notation A < B means that there exists a positive
constant C such that A < CB.
2-For any A, B and C, we define the commutator [4, B]C by the

[4, B]C = A(BC) — B(AC).

3- For any two spaces X and Y, any function f € Y, we say that

X oY, if there exists a positive constant C > 0, such that

Iflly < Clifllx -

4- For the usual Lebegue space LP,p € [1, ], which defined in Definition 1.4.4

below, we will use the notation
1

T
Iz =| [Ir@I2ar |, vr >0
0
5- We will introduce the following notation: we denote by

D,(t) = Coexp(...exp(CO t))

n—times

where C,, depends only on the initial data and its value may from line to line up to

some absolute constants. We will make an intensive use of the following trivial facts

fot ®,(1)dt < ®;(t) and exp (fotcbl(r)dr) < @y, (0).



1.3 Review of functions and mathematical concepts:

In this section, we give some definitions for functions and mathematical concepts.
Definition 1.3.1

We say that f is bounded if there exists a positive number M > 0 such that for any
X EM,

lf ()| <M.
Definition 1.3.2

Let f be a real valued function, we say that f satisfies the Lipschitz condition if,

there exists a constant C such that for every x and y, we have

If(x) — fO)I < Clx —yl.
Definition 1.3.3

Let f: X —» X be a real valued function, we denote ||f]| is the norm of f and is

defined for every x € X, by
If 1l = supjxp=11f )|

Definition 1.3.4

The function f is called continuous at x, € X, if for any € > 0, there exists § > 0
depend on x, and x,, such that
IIf (%) = f(xo) |l < & Whenever |[x — x,|| <.

Definition 1.3. 5

Let(M, A) be a smooth manifold, and f: M — R, a function.
(1) We say fis smooth at p € M if there exists a chart { ¢4, Uy, Vo } € Awith p € Uy,
such that the function f o @g!: V, — R is smooth at ¢, (p).
(2) We say f'is a smooth function on M if it is smooth at every x € M .
Definition 1.3.6

We say that a real valued function f is smooth on the closed interval [a, b], if the
function f and its derivative are continuous on [a, b] .

We note that f is smooth in R if and only if f is smooth in all interval on R.



Definition 1.3.7

A continuous map f: X — Y is homeomorphism, if it is bijective and its inverse is
continuous.
Definition 1.3.8

For any integrable function £, we denote by f = F(f) is the Fourier transform of £,

where
fO=F) = fRd f(x)e™*¢ dx.
Moreover, the inverse Fourier transform is given by
fE@=F1FE).
= [pa f(©)e™ dg.
Definition 1.3.9

For any two functions f and g, we define the convolution of f and g by
()0 = [ FOg6x- s,
R4

Definition 1.3.10

We define the flow associate to the velocity v by the following:

Y(t,x) = x + [ v(z,p(1))dr.
Definition 1.3.11

For any function f, and any points x and x;. Then the Taylor formula of the function f is

given by

fl) = (x- xl)Jf(sx)ds.
0



1.4 Some functional spaces

Here, in this section, we define some functional spaces.
Definition 1.4.1

The space C(D) is the space of all continuous functions on any region D, with norm

. ]l defined as

1f (o = maxyep|f (x)]

Definition 1.4.2

The space C,° is the space of all continuous function f and differentiable such that
the space is compact.

Definition 1.4.3 (Schwartz space)

The Schwartz space S(RY) is the space of smooth functions £ on RY such that f €

C%, and for all « and for any N € N, there exists a constant Cy , depend on N and a, such that

09f ()] < — N __
AT D™

Remark 1.4.1 we have the relation between the spaces C;°and Schawrts space S
which given by the following embedding:

Ce & S.
Definition 1.4.4 (Lebesgue space LP)

We define the usual Lebesgue space LP(RY), with p € [1, 0, by the space of all

continuous real valued functions £ on R, with norm defined as

1

||f||Lp(Rd) = (fRdlf(x)lpdx)p < 00,
and for p = oo, we have

1f 1l = supx|f (I

Definition 1.4.5 (space [P)
For any function f, we define the [P (RY) ,with p € [1, ), norm of f by
Ifllpgay = (& IfGIPY? , forany x € RY

Definition 1.4.6



Let s € R, then the inhomogeneous Sobolev space HS(RY) consists of tempered

distributions u such that @ € L% .(R)¢, and

Il [ 1+ 1P Tac) Pdg < o
]Rd

Definition 1.4.7

Let s € R. The homogeneous Sobolev space H*(R<) is the space of tempered
distributions u over R? , such that the Fourier transform of which belongs to L} .(R%) and
satisfies

lulls = f 17 2@ dE < .
]Rd

1.5 Some Well-known results:

In this section, we give some well-known results as young inequality and young
inequality for convolution. Also recall Holder triangle, and Cauchy Schwartz inequalities.
Finally, we give lemma of Gronwall, and Leibnitz formula for derivatives. Also, we recall the
Pareseval identity.

Lemma 1.5.1 (triangle inequality)

For any two functions f and g, we have

If () + gl < IF GOl + llgCOl.

Lemma 1.5.2 (Young inequality)

Forevery a,b > 0 and r,s > 0 then we have the following inequality
T bS

ab<—+—.
r s

Lemma 1.5.3 (Young inequality for convolution)

For any two functions f and g, such that f € L and g € L* and for any constants
(a,b,c) € [1,]3, such that

Then f * g € L?, and there exists a positive constant C, such that



If * gllyp < Cllifllellgllza.

Lemma 1.5.4 (Holder inequality)

+

If (f,g) belongs to L? x L7 for any (p,q,7) € [1,]3 and such that %z

Q|-

1
p
then fg belongs to L"and satisfies

Ifgllr < lIflleellgllza.

Lemma 1.5.5 (Cauchy Schwartz inequality)

Let f and g be two real continuous functions on the closed interval [a, b]. Then the

Cauchy Schwartz inequality is given by

b b 2 b 2
f F)gdx| < j £ GO 2dx j 9(0)|2dx

This gives that,

Ifglle < Nfll2 llglle.

Lemma 1.5.6 (Gronwall’s inequality)

Let f is a nonnegative continuous function on [0, t], a is a real number and let A be a

continuous function on [0, t]. Suppose also that:
t

fx)<a+ fA(‘L’)f(‘L’)dT.

0
Then we have

t

f(t) <aexp fA(‘L’)d‘L’ .

0
Lemma 1.5.7 (Leibnitz formula)

Let a (x), B(x)and f(x, t) any three functions, then we have Leibnitz’s formula:

;_xff((;))f(x’ D dt = f(x, B)) BEOf(x, a(x)) alx)

10



B(x) 5
+ f a—xf(x,t)dt.

a (x)
Lemma 1.5.8 (Parseval Identity)

For any two functions f(x) and g(x), we have the Parseval identity

(f(x), () = {f(x), g(x))-

11



Chapter II:
Littlewood Paley operators

2.1 Introduction

Littlewood—Paley theory is a localization procedure in frequency space. The
Interesting feature of this localization is that the derivatives (or, more generally, Fourier
multipliers) act almost as homotheties on distributions whose Fourier transforms are
supported in a ball or an annulus. In this chapter, we define the dyadic decomposition of the
space R? and recall the Littlewood-Paley operators. We will prove a Bernstein inequality for
a tempered distribution u with a bloc dyadic Aq and S, (see definition below). we also
discuss the definition of some functional spaces, and in the next section introduce the
(homogeneous) paradifferential calculus, and some results which need later. The definition of
homogeneous and inhomogeneous Besov spaces are detailed, see [2],[6],[7] and [24].

Finally, we give the way that the product acts on Besov spaces.

2.2 Dyadic decomposition
To introduce Besov spaces which are generalization of Sobolev spaces, we need to
recall the dyadic decomposition of the whole space see Chemin [2] and [6]. .

We review some important lemmas that will be used constantly in the research.
Definition 2.2.1

There exists two nonnegative radial functions x € D(R?) and ¢ € D(R? \ {0}) such
that,

1 x(©)+ Ygzo(2798) =1, VEER?,

2- Ygez®(2798) =1, V& €R?*\ {0},

3- Ip—ql =2 = supp (27P) N supp (279) = @,

4- g = 1= supp y N supp (279.) = Q.
Definition 2.2.2

Let v € S’(R?), we define the nonhomogeneous Littlewood-Paley operators by,
A—lv = X(D)U, )

12



Aqv= @279D)y, Vq=0

Let h = F~'(¢) and h; = F~1(x). Then we can write the operator A, v as

Agv = 2% fh(zqf)v(f)df.
]RZ

and
Sqv = Z Apv.
—1<psq-1
=224 [, hy (298)v()dE
and
A_jv =5y, Agv =0, Vg < —2.

Definition 2.2.3

We define the homogeneous operators by
Vq € Z Aqv = @(279D)v,

and
Sv= ) hyv.
p=q-1
Remarks 2.2.1

1- We decompose v as :

vV=A1V+ Ygs0l4V

_ Z Ay, VvES(RY).

q=-1
2- We also write

v=) Aw,  VveS®R)/PR),
qEZ

where P(R?) is the space of polynomials.

3- The Littlewood-Paley decomposition satisfies the property of almost orthogonally:

13



For anyu,v € S'(R3?),
AyAgu=0 If |p—ql| =2
Ay(Sg-qudgv) =01If [p—q| = 5.
4- The operators A, and S, map continuously L? into itself uniformly with respect to q and
p.

5-We have A,= A, ,V q € Nand S, coincides with S, on tempered distributions modulo

polynomials.

The following result is needed, see [6] and [7].
Lemma 2.2.1

For every function f € S , where S is the space of Schwartz such that f € L' n L*
and for every 1 < ¢ < oo, thenwe have f € L°and (1 + |.|?)?9“ is bounded.

A further important result that will be constantly used here so called Bernstein
inequalities. Note that [7] proved this inequality for any tempered distribution u, and the
supervisor of this thesis S. Sulaiman [8] and [23], proved the same inequality for the bloc

dyadic S, and A,, we will give here a complete proof.

Lemma 2.2.2 (Bernstein lemma)

There exists a constant € > 0 such that for all ¢ € Z, k € N and for every tempered

distribution u we have

1 1
Sup|q)=k|[0Squl| » < C"Zq(k”(z_g))llsqull b>a=1 (2.1)

L’

C"k2qk||Aqu||La < sup|a|=k||6“Aqu||La < C"Zq"”Aqu”La (2.2)

Proof of (2.1)

If @ € CQ(R?) such that ¢ = 1 in the neighbourhood of the ball of center 0 and
radius ;. If also ¢, € C5°(R%) such that ¢, = 1 in the neighbourhood of ¢, then we have
Squ=91(279D)S,u.

Then, we can write

Squ=F"1 (‘Pl(z_qD)T(squ)) =F 1 (p1(279D)) * Squ.

14



We get by the Fourier transform with a simple calculation,

FH9:1(279D)) = f 01(2790)e8d] = j 209 (0)e*?*¢dg

R4 R4
= 297F 7 (92(9)) = 297R(27x),
Where
h(2%%) = F7(91(D))

This gives that

Squ=29%h(29.) * S,u.
Therefore

0%S,u = 29@HaDgap(24.) « S, u (2.3)

Taking the LP norm of (2.3) and applying young inequality for convolution Lemma
15.3, we find with (; + 1 = =+2) that

[09Squl| , < 291D 10~ 29) e[ Squl| o,

< ZQ(|a|+d)2—CI%”aah”Lc”Squ”La

Szq(la|+d(5_5))”aah“LC”Squ”La (2.4)
Taking the sup on |a| = k, of the inequality (2.4), we obtain

Suplalzk”aagqu”Lb = (Z‘I(k+d)(%‘%)) ||aah||Lc||Squ||La (2.5)

It remains now to prove that||d%*h||,c < C*. For this purpose, we use Lemma 2.2.1,
then we have
|0%Rll[c < l0%R|l2 + l|0%R|| o (2.6)

Now since h€S, h=F ¢ and ¢ € CP(RY) & S, then | can use Lemma 2.2.1,

that h is bounded and (1 + |.|?)9 8%h is also bounded. Therefore, we have

18%hll,: = f 10 (x)|dx < f A+ 1197+ |.15)0%h]dx

<A+ L™l + | 1H)%0%R]| e

15



< CIA + [ 12)20%Rl| o (2.7)
Also
10%Rll e = supx|0%h(x)| < sup,(1 + . [*)*|0%h|
< ClIA+ . 12)%0%Rll o (2.8)
Putting together (2.7) and (2.8) in (2.6), we get
|0%h||c < C3|I(1 + |.12)%0%h||, < CK,kEN.

This gives in (2.5), that

supcalorsialy < ¢ G s
Proof of (2.2) of Lemme 2.2.2
Let @, € C(R%) such that ¢, = 1 in the neighbourhood of ¢ .Then we have
Aqu = ¢,(279D)Au (2.9)
We take the Fourier transform of (2.9),
F(Au) = ;279 F(Au),
I can Take the inverse Fourier transform, we obtain
bu) =F (9,2 1OF(Au)()  (2.10)
where,

BT =) GO0 (270

Putting this last inequality in (2.10), we get
bguto = " (ORI (=i g 2IDF(Bu) @)

|lal=k

= Z PGS0, (279D F(0%Aqu) (D))

lal=k

= Siatore F (D120, (2790) ) + 0%hqu (x)  (2.11)
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where,

F((0)* S| 2, (279) = %w‘qoewc

i240)% i 0qdd
= [T o1 (e dg

= go(rlal2 [T 1 (()e2""Cdg

= 24(d+lal=2k) p, (249y),
where

U9k

oz 716 Yex2" g

hk(qu) =
Then we get in view of (2.11), that
Aqu(x) = 290@*1al=2k) p, (24 « 9%A u
This is given by Lemmal.5.3 for convolution, that
[Aqul| o < 29@H=20 I 29| [|0*Agul| . (2.12)

Since, we have

e 29111 = f |y (20| dx

Let y := 29%x, then we get
he (2911 = f he()|2-9dy = 279 |R [l (2.13)

Recall that, h = F~¢ and ¢ € CP(RY) & S, then we have h € S , this gives by
using Lemma 2.2.1, h is bounded and (1 + |.|?)9 0%h is also bounded. Therefore
Il <C* (214

Putting together (2.13) and (2.14) into (2.12), we find
laqu|| , < cr2at@rlal-20|lgai ul| . (2.15)

Taking the supremum on |a| = k, of the inequality (2.15), yields to

C 2% Aqull o < supiai=kl|0“Aqu]|
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The proof of the lemma is now complete.

The following lemma is useful to our result, see [15], and we will give here the proof.
Lemma 2.2.3

Let f be a function in Schwartz class and i a diffeomorphism preserving Lebesgue

measure, then for all p € [1, 4], and for all j,q € Z, we have

13 Agfop)l,, < C27-A[VypOD| o [[Agf]l
with
a(j,q) = sign(j — q).
Proof
To prove this result, we distinguish two cases: j > g and j < q.
Casel:j>q.

For this, we use Bernstein’s inequality, to get

13 Agfop)ll » = 277 (VA (A fo)l,  (2:16)
It suffices to combine Leibnitz formula again with Bernstein’s inequality and Holder
inequality.
1vA; (g o)l = [VAGF]l IVl
< 29| Agf|| IVl (217)
Substitute (2.17) into (2.16), get
14;Aqfowdl,, = 2977 [|Agf |, NIV lleo-

This yields to the desired inequality.

Case2:j<gq

Will use the following duality result

14;(Agfov)ll,, = supig,p,e: €4 (Ag f o), 9] (2.18)

with %+ pi = 1. Let ¢,eCs (R%)be supported in a ring and such that ¢; =1 on C.
1

We setA,f := ¢;(279D)f. Then we haveAquA—quf. Combining this fact with

Parseval’s identity and the preserving measure by the flow

18



(B;(Bafow). g)] = [(Aef, By (Ajg)0w~1))|
Therefore, we obtain
(& (Befow). @) < lBofl,, [|Be (0w,

This implies in view of Bernstein’s inequality and Holder inequality
4 (Aqf o), ) < [[Aaf | o 27~ NV~ = [|sg] 5, (219
Substitute (2.19) into (2.18), we get

14;(Agfov)l,, S 1AgfIl 27~ IVY~ o llgll o

It completes the proof.

2.3 Homogeneous and Inhomogeneous Besov space

Now will define the homogeneous and inhomogeneous Besov spaces by using
Littlewood-Paley operators. We recall also the definition of Chemin Lerner space and give
some results that will need later.
Definition 2.3.1

Lets € Rand 1 < p,r < co. The inhomogeneous Besov space By, is defined by

By ={f € S'(R?) = IIfllg, < oo},

where

171, = (|28 7,
We define also the homogeneous norm

1N, = (|22 ldas Il .

The two spaces H* and B; , are equal and we have
1 S s [s|+1 S
crsr 1ullBz2 < [lullH® < CPFH{ullBs .
Remark 2.3.1

We have also the embedding

PL<p, and 1 <715
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Definition 2.3.2
LetT > 0 and p > 1, we denote by L’;Bg,r the space of distribution f such that

Ifll2ms, = || @ 8qf [l p)er

< 00,
L7

Besides the usual mixed space L7.B3

s need Chemin-Lerner space L7.B5, which

defined as the set of all distributions f satisfying

Il = |

28l | < e

The relation between these spaces are detailed in the following lemma, which is a

direct consequence of the Minkowski’s inequality.
Lemma 2.3.1
If seR,e>0and (p,p,7) € [1,0]3, then we have
L4BS, & I4BS, - LBs7E | ifr = p and

LABSte o 9By, o L9Bs, ifp > 1.

2.4 Paradifferential calculus

In this section, we study the way that the product acts on Besov spaces see Chemin
[2] and Bahouri [6].

Definition 2.4.1

We denote by T, v the following bilinear operator:

T, v = z Sqg-1u Qg
q

The remainder of u and v denoted by R(u,v) is given by the following bilinear

operator:

R(u,v) = z Agulgrv.
lg—q'|=1

Just by looking at the definition, it is clear that
uv = T,v+ T,u+ R(u,v).
We need also to the following result [6] and [15], for a proof.
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Lemma 2.4.1

Let (p,a) € [1,]%, and v be a divergence free vector field of R2. Assume in

addition that a and b such that % + % = 1. Then we have

q,,.
z 22||[A,, v. v]u||L%Lp < vl

sl s
o7 LtBI;;1 LB

p,1
Moreover, we have for s € |—1,1],

> 29||[ag,v. V]ull, < IVvllllulls
qEZ

The following see result is useful to prove the uniqueness of solution of our result, see
[15], and we will give here the proof.
Proposition 2.4.1
Let v be a vector field with divergence v = 0 and 8 be any smooth function. Then
there exists a constant C > 0 such that
lv. V61l g, < C lIvllgg, N16ll5
Proof

We decompose v. V8 as:

v.VO =T,0 + Tygv + R(v,V6),

where,
T,.V6 = Zs'q_lvaqe,
qEZ
Tvgv = Z S‘q_IVHAqv,
q
and
R(v,V6) = Z AgvAg,;V6.
qEZ
i€Z
Therefore

109610, < IT,.V0llg0,, + ITravllze, + IR(2, VOl g0,
=1+ 11 + 111 (2.20)

For I, we have from the definition of Besov space 330,1 and Bernstein inequality, that

Mlsg,, = 1T, 96llsg, < D [1S4-1074g6]l,.
qEZ
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< D 8¢l 173461l
qEZ

< ) [18qvll, 27 1Al .
qEZ

S lvllgg N6, (221
By the same way, we get for 1, that is

11llgs,, = ) [1S4-17884]l,,
qEZ

< ) (180176l 1ol .

qEZ

S VOl llvllze,,
< Z”Aqve”wuvuggﬁ.
q

Using again Bernstein inequality, we obtain

g, Z 29|48 lIvll g0,
q

<1005 lIvllge, (222)

For the remainder term I11, use Bernstein inequality again

lHlse, = IR, VOl < Z”Ajfe(v, 7o) ..
Jez

< > lldy Ghqvigui70)] .

JEL

s ) Vgvlllldg 0],

qzj-3
ie{¥1,0}

SIS 2] 13909 e 21 V)1 [

qzj-3
ie{¥1,0}

S lvllsg,, 161152, , (2.23)

Combining now (2.21), (2.22), (2.23), and (2.20), find

0. V6150, < Ivllge 16152,

Now the proof of the proposition is complete.
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Chapter II1I:
Around a transport-diffusion equations

3.1 Introduction

Transport equations arise in many mathematical problems and, in particular, in most
partial differential equations related to fluid mechanics. Although the velocity field v and the
source term g may depend (nonlinearly) on f, having a good theory for linear transport
equations is an important first step for studying such partial differential equations.

This chapter is devoted to the study of the following class of transport equations

{ate +v-V0 +|D|*0 =f

TD
Blt=0 = 6o, ( )a

where 8,, f and v stand for given initial data, external force, and vector field,
respectively. We aim to state some useful estimates for the dissipative term |D|%. We

discuss also two kinds of estimates for (TD), as L? estimate and smoothing effects.

3.2 Some estimation for the dissipative term |D|*

In this section, will give some useful estimates for any smooth solution of linear
transport-diffusion model (TD),. The proof of the following result can be found in [15].
Proposition 3.2.1

If feBg, such that a € [0,1[, and let i be a Libshitz measure-preserving

homeomorphism on R<. Then there exists a positive constant C,, depend only on a, and such
that

11D1% (fo ) = IDI°F) 0 Y2 < Ce"OV(©)2°IIf Il 2,
with
V(©) = IVl 0.
Now, will prove the following result which describes the action of the semi group

operator e~t?1“on distribution whose Fourier transform is supported in a ring, see [2] , [15]
and [21].
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Proposition 3.2.2
Let p € [1,+] and (t, A1) any couple of positive real numbers. Suppose also that
aeR, and v be a zero divergence, with supp Fv in included in a ring C. Then there exists a

positive constant ¢ such that

||e‘t|D|av||Lp < ce_c_lt’lallvlle.
Proof

let @ in D(R® \ {0}, such that ¢ = 1, near the ring C, then we can write
« 1 « 1 a
etoly — (I |D|) etIDl®y, — F-1 <<p (If) o-tlél ﬁ(g)>

= Fi(p (2) e 1) « F )

= gl(tl X) *V, (31)
where,

1 1 . 1
=F-1 — —tl§1Y) = ix§ ,—tlél% (=
gtx) =F <¢ (Af)e ) (2n)d je ¢ "’<,15> a
R4
Taking the LP of (3.1) get

[leP1 | , = llga(t,x) * vlI,».

Using lemma 1.5.3 ( Young inequality for convolution) , we obtain that
leP¥ ]|, < cllgallallvlle (3.2)

It remains then to estimate || g, ||, for this purpose, since we have

ga(t,x) = (zi)d f exE=tlE1% (%5) dc.
R4

Taking the L' norm of both sides of last equality, and using lemma 1.5.5 (Cauchy

Schwartz inequality), we get

lgall: < j 19200 dx < f (L + xID) (1 + [x12)41 9200 Ddx
]Rd ]Rd

<NA A+ 1Dl @ + 1x1)galle
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< CIIA+ 2 %ga ()l oo (3.3)

Thus, we have

11+ 1xI)?g ()l e = supy (1 + |x|*)%g(x)] (3.4)
Since we have

R4

Letx = %E, and we set

1 i ajz|a
Gt 2) = 103 (13) = Ga f eI o (£) dE g(t, %),
R4

Thus

1

(1 + |x|>)%G,(x) = (ZT)ded (1d - Af)d((p(f)e—tlalfl"‘) et g,

Using now Leibnitz formula, yields

(1d — 8)* (9 (£)e~tIE1%) = z CE 99 F (£)aF eI,

B=a
la=2d]|

Since ¢ is a supported in a ring, it does not contain a neighbourhood of zero, then we
get for & € supp o, there exists a couple (c, C) of positive real numbers such that for any ¢ in
the support of ¢,

|(0F e~ 11| < C(1 + tA%)IBle~tA“KI® < cemcT"tA",

Therefore,

|(1d - 8¢)* (p(©)e=1)

< e S Gty
BL=a
|la<2d|

The term in the right hand side belongs to the space L (R%), thus deduce that

(1+ |x]2)2G,(x) < Ce™¢'tA°
This gives in (3.2) that is

||etDau||Lp < Ce || p.
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Now the proof of the proposition is complete.

3.3 Smoothing effects

Present here two kinds of estimates about a transport diffusion equation: L?
estimates and smoothing effects. The proof of the following L estimates can be found in [7],
[11], and [21].

Proposition 3.3.1
Let 0 <a <2 and v be a smooth divergence free vector field. Let also f be a

smooth function and 6 is a smooth solution of (TD),. Then for every p € [1, o], we have

16O lp < 11661, + f I Ollrdr .
0

Proof:
We will prove the proposition for p > 2 only. The case p € [1,2], can be obtained by
duality method. Then multiplying the first equation of (TD,), by |8|?~26, we get

jate|9|p-29 dx+f|D|ae 18]P-26 dx = jf|9|r’-29dx.

Integrating this last by parts, lead to

1d
z—)%lle(t)llfp +J|0|7"29|D|“9dx =Jf|9|?"20dx (3.5)
We use the following result which we can found in [15] , [25] and [27].

f|D|a9 161P-20dx >0,  (3.6)

and using Lemma 1.5.4 ( Holder inequality) for the right hand side of (3.5), we get

f FloP-20dx < [IfIp 01 (3.7)

Plugging (3.6) and (3.7) into (3.5), yields to

1d p _1d P _ a
_ N8I, <165 + [161P-20IDI0ax.

-1
< [Iflle 6N
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It follows that

1d -
EaIIH(t)Ipr < lIfllieliends”

Thus we have

4 d _
”9|I€IJ1E”9”L1’ < lfllwliensy”

Dividing this last inequality by ||6||f;1, we get

d
M8l r < Ifllr (3.8)

Integrating in time the inequality (3.8), we get

18O llo—11G0ll.r < j @l
0

Therefore,

10Ol < 18ollr + [, If @l pdr.

We intend now to prove the following smoothing effects, which is the main result of
this chapter and it is the main ingredient of our result in the next chapter.

Theorem 3.3.2

Let v be a smooth divergence free vector field of R? such that

v € L, (R, Lip(R?) and f € L},.(Ry; B5,),s > % We consider also a smooth
solution 8 of the transport-diffusion equation (TD),, with 6, € B;l. Then for every r €

[1, o], there exists a positive constant ¢, depend only on s and such that

100 ox < cee@ (I8olls, + I ll355, )
B '

tP2,1

where,

V@) = [ 17v@lmd.
0

And if v = Vt|D|716, the above estimate is also valid for s > —1.
Remark 3.3.1

Note that the theorem is also true in the case of s € ]-1,1[, and (p,7) € [1, ]?

which is proved in [15].
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Proof of Theorem 3.3.2

To prove our result, we use a new approach based on Lagrangian coordinates
combined with paradifferential calculus. The idea of the proof will be done in the spirit of
[13], [15], [17] and [22]. First, we prove the smoothing effects for a small interval of time
depending of vector v, but it depends not on the initial data. In the second step, we proceed to

division in time thereby extending the estimate at any time arbitrary chosen positive.

3.3.1 Local estimates

We divide the proof into two cases: case 1 is r = oo, and case 2: r < co.
Case1l: r = oo.

We localise in frequency the evolution equation, and rewriting the equation in
Lagrangian coordinates. Let g € N, then the Fourier localized function Aqe =70, EN

satisfies

1
£4(8,60) + A, (v.V6) + A4 |D|Z26 = A, f.

Now using the notation [ A, ,v.V |6 = A,(v.V0) — v.VA,0, we get
A(0. V) =[Dg,v.V )0 +v.V AL

gives that

1
0:0g0 + V.V A0 + Ay, v.V [0A, + DIz A0 = A, f.

Therefore

1
00,0 + v.VA0 + D200 =7, f—[A,,v.V]0:=F,

From Proposition 3.3.1, we have

t
8,0@1,: = 8,60l + | 1R, e

Multiplying this last by 29° and summing over q, yields,

t
D 20500, dr < Y 29]|agoll, + f > 2|kl dn
q q 0 q

This gives that

t
161155, < N6ollss, + I ll1a5, +C f Zqzqsll[Aq w710 , de.

Therefore
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t
161lz085, < 60lliss, + I llze5, + f 2 2%||[ g, v.V ]| , dr
' 0 q
By using Lemma 2.4.1

161lzess, < 6ollgs, + IfllLips, + cl, Vo (D)l 101|705, dT -

Using Gronwall’s Lemma 1.5.6, to obtain

t
1011055, < € (I6ollag, + l1f N33, ) eI @li=de (3.9),
This completes the proof of the result in the case of r = oo .

Case2:r<oo:

Let us now introduce the flow v, of the regularised velocity v,

Pq(t, x) =x+fv 7,YPq(7, x)
0

We set
0,(t,x) = AyO(t, Y, (t,x)) and F, (¢, x) = (t g (t, x))

Then we have the equation,
_ i 1 1 -
0.0 + D128, = Fy + IDI2(6g 0 ) — (IDI26,) 0w, := F} (3.10)
Since the flow preserves Lebesgue measure, then we obtain
IFll > < llaqfll,. + l[2q v-v]o]l (3.11)
Using now Proposition 3.2.1, we find that for g € Z
1 1
[10F (Fow) = (10Ff) 09| , < ce@viifl:  (312)
with
V(E) = 190l a0,
Putting (3.11) and (3.12) into (3.10), we obtain
_ q
”Fqllle = ”Aqf“Lz + ||[Aq,v. V]9||L2 + CeCV(t)V(t)ZzllAqelle
Now using the notation V(t) < e’ ®, in Chapter I, we obtain
_ a
IF > < l18afll 2 + [I[ag, v V10| , + Ce@2zaq0]| ., (3.13)

again will localize in frequency the equation (3.10) through the operator A; , j € Z
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— 1 — —

where

_ _ 1 1
AF = AR + A (|D|2(9q 0Y,) — <|D|29q> mpq).

Then from equation(3.14), we have
t
_ 1 o _
Aj 6,(t,x) = e tIDl2 A; 69 + f e~ (t-D)IDI2 AF,(v)dt
0
t

1 1 1
+fe—<f—f>lD|2A,- (IDIZ(Hq 0y) — <|D|2 eq) mpq).
0
Proposition 3.3.1 yields to

1
1884, < e~ ay03

r_
+ fot ||e_(t_f)|D|2Aqu (T)” dt
L? L?

t
1 1 1
+f ||e—(t—r)ID|2Aj(|D|2(0q ot,) - (10126, ) mpq)”LZ dr.
0

Using Proposition 3.2.2, and (3.14), we find

_ i t J
80l = ce=Ha gl + ¢ [ emeen fay o]
0
q [t I
+C eCV(t)ij e~ (=022|A,0(1) || . dx
0

, .
+ Cf e_c(t_T)Z%“[Aq'v' V]H(T)“LZdT'
0

Integrating this last estimate with respect to time t and using Lemme 1.5.2 (Young

inequality), we have for every r € [1, o],

_ . AN q-j
I8l < €2 ( (17 ) a8+ aafl | 4060 25 ol

—j t
+2-J/2r f0||[Aq,v. V]H(T)lledT (3.15)

Let N € N be a fixed number that will be chosen later, and since the flow @ preserves

Lebesgue measure then we write

20D, = 2000

Tr2 Tr2
LiL LiL

< 2a(s+1/2m) Z A6, - +Z Ab )
I Y P SN YA
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= 11 + Iz (316)
If j — q = N, it follows by using Lemma 2.2.3 that,

18,6, .. < ¢ 2—|j—q|ef§||w(r)||LoodT||Aq9”LTLZ
t t

< ¢ 27 li-aleV(®) ”Aqell

LYL?
Therefore, get

I, < C27NeV®2als+1/20|A 0| (3.17)

Li1?

For the term I,, have

I = 2q(s+1/2r)z AG ,
2 |j—q|<N” ) q”L’,_:LZ

use (3.15), yields

=

L <C (1 — e—ng)F 29||8460]| . + C277295 ||Aqf||L%L2

+ ngecv(t)zq““/") ||A616'”LrL2
t

+C2N/2r2% [1[Ag, v. vje@| .dr  (3.18)
Plugging now (3.17), (3.18), into (3.16), obtain that
2q(s+1/2r)||Aq9” <C Z—Nev(t)zq(s+1/2r)||Aq9||
L

ri2 = L2
'L Ll

SR

q
+0(1— e ) 20588,

+C220 ], + € 2P O2EH /g
t t

t
+C 2N/2r2q5f [[24, v.7]0 @] . d7.
0

We set now

H(©) = 2067/, .

Therefore
N
Hyt)<C [z-NeCV@ + 27eCV(f>] Hr(t)

1
T

q
(1) 20 a 0] + c2¥ar ]

1,2
LiL

t
+C 2N/2T2q5f 24, v.7]6(@)] . dz.
0
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Now, claim that, there exists two constants N € N and C, such that if V(t) < C,,

then
N ,CV(t) N cv(t) 1
27 Ve +22e¢ < —
2C

To show this, we take first t such that V() < 1, which is possible since
t“fgk V(t) = 0. Second, we choose N in order to get 2 Ne¢ < i By taking again V (t)

sufficiently small, we obtain that

N c 1
27 o€ < —.
¢ =%c

Therefore, there exists two constants N € N and C, such that if V(t) < C,, then

N 1
2-NgCV() 4 27 oCV(D) < TR (3.19)

Under this assumption V(t) < C,, we obtain for g > —1,

[y

UANS
H;®) < C (1 — e-C”ZZ) 29°[|8g66 |, + €2 [[A,f]|

Lir?
+C2% [ ||[aqv.7]0(D)|| ,dr (3.20)

summing over g, and using Lemma 2.4.1, we find for V(t) < C,,

0
el ..

t¥2,1

t
1 < ClBollsg, + Clifllgeg, +C f V(D)1= 10 (D)l 55, dr.
r ’ ) 0 )

Using Lemma 1.5.4 (Holder inequality), yields

1011 2= C(I8ollsg, +1F iz, ) + CV@lOlzss, (32D

tP2,1

Plugging (3.9) into (3.21), we find

t
101 < C(Iollag, + flligsg, ) e bI™ =t (3.22)

tP21
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Therefore, the result is proved for small time.

3.3.2 Globalization
Let us now see how to extend this for an arbitrary positive time T. take a partition (

TN, of the interval ,[0, T, such that

J P IVv @l de = Co, ¥ i € [0,N],

Reproducing the same argument of (3.22), we obtain

Tit1

Tiy1
If (Dllsg, dT ) exp <f ”VU(T)||L°°dT>

T;

el i SC (IIH(Tz)IIBg,l + Cf

Liryris11Ban T

Summing these estimates oni = 1, to i = N — 1, and using triangle inequality, gives

N-1 T T
1911 < c(Zue(muB;l e ||f(T)||B§1dT>eXp (¢ [ wvotonmac)
LrB, *" = ‘ 0 ' 0

From (3.22), we have

161 sz <CN (6ol + 1f 1355, ) D

T 2,1

It suffices to choose N such that CN =~ V(t), then

||9||~r s+ < CV(t) (”90”35.1 + ||f||L%B§‘1) e V(D).
LTBz,l
Therefore, get
Ilellz; o < CeD (1101155, + 1f N385, )
2,1

This is the desired result, and the proof of the theorem is now achieved.
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Chapter IV:
Global existence and uniqueness for solution of 2D guasi
geostrophic equation

4.1 Introduction

The theory of global and uniqueness result for the quasi geostrophic equation, with
small initial data, is proved by many numerous authors, and in a different functional spaces,
refer to [12],[19] and [28]

4.2 Main result

In this chapter, we will study the system (QG), with = % , that we study the system

1
0.6 +v-V6 + |D|260 =0
divv =20 (QG)%
Ol¢=0 = Bo.

We will prove the existence and uniqueness solution for (QG): in the Besov space
2

B3i,s> 2 and finally, we combine it with the results of [14] and [15]. Our result reads as

follows.
Theorem 4.2.1

Let 6, € B53,,5 > % then there exists T > 0 such that the (QG): equation has a
2
unique solution @ such that
< 1L 55+
6 € C([0,T];B31) NL}B, * .
In other words, there exists § > 0, such that ||90||3301 < B, then than we T = oo.
Proof

The proof of this theorem can be given in four steps
Step 1: A priori estimates

Step 2: Global existence
Steps 3: Local estimates

Step 4: Uniqueness.

34



For conciseness, we shall provide the a priori estimates supporting the claim of the
theorem, and give a complete proofs of the uniqueness and local existence parts, while the

proof of the existence part will be shortened, and briefly described.

4.2.1 A priori estimates

The important quantities to bound for all time are the L norm of the vorticity and the
Lipschitz norm of the velocity. The main step for obtain a Lipschitz bound is given an L®
bound of the vorticity. We will prove three kinds of a priori estimates: the first one deals with
some easy estimates that one can obtained by energy estimates. The second one is concerned
with a global a priori estimate of the Lipschitz norm of the velocity, and the L* norm of the
vorticity. The last a priori estimates concerned with some strong estimates. We start then with

the following which is a direct consequence of Proposition 3.3.1.

Proposition 4.2.1

Let 6 be a smooth solution of (QG)1, and 8, € L?. Then we have
2
16112 < [16ol,2 -
Now we prove the following

Proposition 4.2.2

Let 6, € 330,1, and let w be the vorticity of the velocity, with w := Vv. Then then

there exists two constants C, g > 0, such that if ||90||3301 < B, then we have Vt € R,

IVUll 300 + 0@ ll= < Coeer,

with C, depends only on the norm of the initial data.

Proof

First, we use Holder and Bernstein inequalities, the embeddings Bg,,l o L%,
combined with the fact that Riesz transform maps continuously homogenous Besov space

into itself, get

V()= f V(D) d
0

< t 190l 050 ,

< tlvlle o,
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< t110llep,, (4.2.1)
Now using Lemma 2.3.1
161l 052, < CllOllzosy , (4.2.2)
Plugging now (4.2.2) into (4.2.1), we obtain that
V(E) = IVl < Ctl10llzopy,,  (4:23)
can now estimate ||w(t)|| ., for this use the fact that
lo(@lle = Vv,

and the embeddings Bé’oll S L%, combined with the fact that Riesz transform maps
continuously homogenous Besov space into itself, we get in view of (4.2.2),
lo@ll= s IVV(O)]]1e

S IVo(®lzo,,
S 19lsy,,
< 1161052,
S 6l (4.2.4)
From (4.2.3) and (4.2.4), we get
VUl 100 + lo(@)]lp= < € (¢ + 1) [|10]lz2py, ,-
Now using Theorem 3.3.2, for p = oo, we obtain

V0l 00 + llw(®)ll = < ||90||Bgo‘1eCV(t).

Since 6, € 330,1, then there exists a constant 8 > 0, such that
16652, < B, (4.2.5)

And since the function V depends continuously in time and V(0) = 0, then we can
deduce for small initial data that V does not blow up, and then there exists a constant C > 0,
such that
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V() <CllOollgy , VEER, (4.2.6)

Therefore, we get

C |16pll 51
160ll53, .

Vvl 10 + lo(@)]lio < Cli6ollgy, (E+1)e
This gives that
IVVll 00 + (@l < Coe®t,

The task is now to find a global estimates for stronger norms of the solution of

(QG):.
2
Proposition 4.2.3
Let 6, € B3 ,, with s > % and 8 be a smooth solution of (QG):. Then we have
2
101lzms, + 1011 o1+ vlizess, S W6ollss,
tP21
Proof
First, we apply Theorem 3.3.2, we get
0l sz, + 1101 .z = 0ol e (4.2.7)
tP2,1
Now, to estimate ”””Z%”B%l' we can writ v as
v=A_v+ Z Agv.
q=0
Then

IVllzeops, S IA_1vlleop2 + V]| zeops
t 521 t t B21

Using again Theorem 3.3.2, yields

lvligess, S Wllperz + 161l zeps
t B21 t t B21

S wllgore + 16ollgs,  (4.2.8)

Now, since v = (—R,0,R,0) = (_|Ta|2 9,%9), then by the continuity of Riesz transform, we

get

IVl o2 = 6ol 12 (4.2.9)
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Putting (4.2.9) into (4.2.8), we get
Ivllzeps, S 16oll 2 + 16ollss,  (4.2.10)
Combining (4.2.7) , (4.2.10),and using proposition 4.2.2 we get

16105, + |I9llz%B;+1% +vllzess, = 16ollss,-

This is the desired result.
4.2.2 Global Existence

Let us now outline briefly the proof of the existence of global solution to (QG):. We
2

construct a global solution. First, we smooth out initial data
661 = Sneo.

By definition of the operator S,,, there is a radial function y € D(R?), such that
OF = 5,00 = 22"y (2™.) * 6.

Then, we have
165112 < [122"x(2™.) * Byl 2

< 1227 (2™ )l 2 166l 2
< llxllz2 18]l 2
< C [|6o]l;2,

and in the Besov space, we have

103153, < ) a6l

qsn-1

< > 2 Y [liyhal,.

lg-pl=1 qsn-1

<D 27 [l ).
p

< C l6ollss,-
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The fact that, div v = 0, due to the incompressibility of the vector field v,. Let us
now consider the system,

1
9,6, + v,.V0, + |D|26,, = 0,

Vn = (—R26,, R16,), (4.2.11)
05 (0,x) = S,,0,(x),

(60’ UO) = (0)0)

The global existence of the solutions is governed by V,,, where
t
V(@)= [ 170Dl
0

Since the initial data are smooths, then can construct locally in time a unique solution
(6,, vy,). This solution is globally defined since the Lipshitz norm of the velocity, does not

blow up in finite time by Proposition 4.2.3. Once again from the a priori estimates, have

10ulzzas, + 10l o1+ lonllzzas, < I0ollsg,  (42:12)
t

BZ,l

The control is uniform with respect to the parameter n. Thus if follows that up to an
extraction that (v, 6,,) is weakly convergent to (v, 8) belonging to
: : o e ste
L$Bs, x LYB3, nLLB, %
Now, will prove that the (v, 8,,) is a Cauchy in LY L? x L%.L2.

Let (n,ny) EN% vy, =V, — v, and  6,,, =6, — 06, ,then aaccording to the estimate

1

(4.2.12), get
||vn,n1||L;oLz + ”0"'”1”1,%1,2 < [[vno - vnl.olle +{|6n0 — 9n1,0||L2

This show that (v, 8,,) is of a Cauchy in the space Ly L? x LL.L2. Hence, it converges
strongly to (v, 8). This allows us to pass to the limit in the system (4.2.11) and then we get
that (v, 8) is a solution of (QG).

2

The continuity in time of 9:

Let us now sketch the proof of the continuity in time of 6, that is 8 € C(R+,B§,1).

From the definition of Besov space, have for N € N, T > 0 and for ¢, t; € R,,

10G) = 6(t)lss, < > 2%][8,0(0) — 8,0t .

q<N
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+ Z 2q5||Aq9(t) - Aqe(tl)”Lz

q=N

< z 2| 8,6(t) — A 0(t)|) .

q<N

+ Z 205 ([|lag8 | , + 18,0t . )

q=N

Therefore, have

10G8) = 8(t0)llsg, S ) 29°[[,0(8) = 8,0 + € ) 286,

q<N q=N
=L+ (4.2.13)

For any &€ > 0, then there exists a number N such that

I, = 2 2q5||Aq9||L§°L2 <e.

q=N

For I, we use Taylor’s formula, we have

1
AB(D) — AB(ty) = (t—t;) f 9,0,0(s)ds.
0

Taking the L? norm of the above equation, multiplying both sides by 295, and summing over

q < N, we get

> 2018400 = 80| x < e = ta] D 2910840,

q<N q<N

S |t -t Z 245 27424||0,4,0 ||

q<N

LPL?
Therefore,

Z 295||a,6(8) — AqH(tl)”Lz S 1t —t]2M10,01opss (4:2.14)

q<N
It remains now to estimate ||at9||L;oB§_11. For this, use the equation of 6:

1
9,0 = —v.V0 — |D|26 (4.2.15)
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And will prove that 0,6 in the space LY B57*. To do this, have from Remark 2.3.1 that,

1 1
ID|26 € B, 2 & BS7" (4.2.16)
From free divergence of the velocity and Bernstein inequality we get,

0. 70l = ) 29608, .70,
q

< ) 2084w 0)]
q

< llv 6llsg,.
Therefore, we obtain
0. V6llps72 < Nlv Ollss, (4.2.17)
Since the space Bj ; is an algebra with s > 1, then
1 6llas, < lIvllss, 116115, (4.2.18)
Putting (4.2.18) into (4.2.17), we obtain
1v.70llps < Ivllgs, 101lss,  (4.2.19)

Combining (4.2.16), and (4.2.19), get 8,0 € LY B37". This gives in (4.2.14), that

> 295184600 = 8,6, < Cle = 512Vl N6,

q<N
Therefore, get in view of (4.2.13), and forany € > 0,
16() — 6t g, s Clt — talllvllps, 16|, + €
Using Proposition 4.2.3, with g = 0, get
Ivllgs, 16155, < 116ollss,-
This gives that,
19Ct) — 0(t) g3, < Co.

This proves the continuity of 6.
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4.2.3 Local existence

The local time existence depends on the control of V(t) = IIVUIIL%Loo. We distinguish two
3 3

cases: s >-and s = -
2 2

3
Casel:s >E

There exists a > 1, such that s > 2 — % From the inequality,

t
v < (10, dr
0

And by using Lemma 1.5.4 of Holder inequality, we get for % + % =1,
V(e) s 10115y,
1
S to]|0]l epy -
Theorem 3.3.2 and Remark 3.3.1, gives

1
V() s to]|6ll ,_1eV® (4.2.20)
B 2a

00,1

Then we deduce that there exist g > 0, such that

1
5160l , s S B (4.2.21)
B a

0,1
This gives that
V(t) < C, (4.2.22)
Now, using again Lemma 2.3.1 and Theorem 3.3.2, with ¢ > 0, yields
101l 055, < 61lzops, + 101l7252,
< Cli6ollss,

Therefore, from (4.2.21), we have

1
t < Bll6o Il s
Bz
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Then for every t € [0, T], we deduce that the time existence T is bounded below by

16olI72 1+ <T.

2a
Boo,l

3
Case2: s =3

Procedd the same calculation as in (3.20), we have

a\ 44
101121, S z (1 — e‘Ct22> 272|260l
qEZ

3q
27 8,016
qEZ

=1 +1, (4.2.23)
Using Lemma 1.5.4 of Holder inequality and lemma 2.4.1, then have

L slvll_ s 116l =
I2B* i2B*

00,1 00,1
s |611 s (4.2.24)
LBy,

Putting (4.2.24) into (4.2.23), get

161l ag: S ) (1— et 237q||A Ool| . + 16117 4.2.25
LiBL, = € qYl| g (4.2.25)
L

q€z tBoo,l

It remains now to estimate ||@]|* s . For this, have as before, that

LtBoos
oL
7\2 .4 a
el s s Z (1 — e‘“zz) 22|84 6o ,c + Z 22 ||[Ag, v. |7]9||L%Loo
LtBeo, qET qET

Using (4.2.24), obtain

q
ol s = ¢y (1-e%)
125t

0,1 qu

N =

q
231a,60]. . + 61
2B

s (4.2.26)
4

00,1

Since have,ast — 0%,
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N[

Z (1 - e‘“z%) 237q||Aq90||L°o > 0.

qEZ

Consider now, C; be a sufficient small constant, and we define

a
T, :==sup {t> O,Z (1 — e‘Ctzz)
qEZ

N[

3q
22 |8g80[| 0 < €1,

Then we have with t < T; and V(t) < C,,

el s =< Z (1 — e—m%) 237q||Aq90||L°o (4.2.27)

Plugging now (4.2.27) into (4.2.25), get
V(e) < Cllollsy,

1
WL
< Z (1 — e—thZ)Z 237q||Aq00||L00
qEZ
1 2
a\2 3
|y (1 — e ) 2 a0, | (4228)

qEZ

Therefore,
1

v (Y (1- e ) 27 g
qEZ

This gives that for C; sufficient small,
V(t) < C,.

Then in view of theorem 3.3.2, we get

s+ 161353, < C IG5
2,

1

lell

Lt BZ‘1

4.2.4 Uniqueness
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In this paragraph, will establish a uniqueness result for the system (QG): in a largest
2
space, say in the space
Br = L¥B%,, N L}BY, ;.
Suppose that 8,and 6, are two solutions of (QG): with the same initial data and
2

belonging to the space By, for a fixed time T > o. Therefore, we have

atel + vl.V01 + |D|a91 = O

divv, =0 (4.2.29)
91|t=0 =0,
and
0t92 + UZ.VHZ + |D|a62 = O
divv, =0 (4.2.30)
92|t=0 =0,
Taking the difference between (4.2.29) and (4.2.30), we get
at(91 - 92) + vl.V91 - vz. ng + |D|C¥(91 - 92) = 0
divv, —divv, =0 (4.2.31)
(6 — 92)|t=0 =0
We calculate v,.V8; — v,.V8, as follows: Since
171. V(@l - 92) + (171 - 02)792 = 171V 01 - 171|7 92 + 171\792 - 172 \792
== vl.V 91 - UZVHZ.
Therefore
vl.V 91 - 172. VHZ = vl.V( 91 - 92) + (172 - 171). VHZ
We set

@::91_62 a.nd V=v1—v2.

Then, we obtain the equations
9,0 +v,.VO +V.V6, + |D|*0 = 0
divV =0 (4.2.32)
O1l¢=0 = o
Therefore Remark 3.3.1 allows us to applying theorem 3.3.2, we get

v s
101155, = ey, V6,180 , (4.2.33)
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Now, we use Proposition 2.4.1 we obtain
V.V, 115, < IVllse, 1621152 .

The continuity of Riesz transforms in the homogeneous Besov space Bc?o,l, implies

that,
IV.V6,lI5 , S 1050, 1162113, ,

Putting the last inequality into (4.2.33), yields

IVv4l
e

t
I8llg, L f V.70, ()l , dr
o

[Vl 1 t
< et (o)l 116, (01l 52, dr.

Using Lemma 1.5.6 of Gronwall’s inequality, get

Vv 16211, 1,
1015, < Ce i e et

Since 8, € L}BY ; and Vv € L7 L™.

This gives the uniqueness of the solution Which is 6; = 6,.

Comparison between some results about (QG),

The result of global existence and uniqueness for solutions of (QG), is obtained by
many numbreous authors and in a different functionals spaces. Mention the paper of [8], [14]

,[15] and combining these results. since the authors in [14], are proved the result for

1
(@p.9) € |0,5] x (2,000 x [1, o]

1 a
and for the initial date 6, in the Besove space thatis 6, € Bp’q” . The result is also

proved by Chae and Lee in [4], but for p = 2,q = 1 and in the critical Besov space B57%.
Note that in this work, take p = 2 and s > % as a special case of [15] and see that if

we take g = oo, then the result of [15] is the best result and more precise than [14], because
they are proved the result in a large space and the embedding between two Besov spaces

1+2-2a
Bp’l” S Bgofl‘" , for p < co. This embedding gives that
166l 522 < Cll6oll 1+2-2q <

Bpa

46



Conclusion

In this work, extend the global existence and uniqueness for (QG), to the

supercritical case, that is when a < 1. Precisely, we taking a = % in our work, and proved the

. . . 3
global existence and unigqueness result in the Besov spaces B3 ;,s > >

The existence and uniqueness of the solutions of 2D quasi-geostrophic equation, is
obtained by using some a priori estimation based on the Lipschitz norm of the velocity, and

some strong estimates on some Besov spaces.
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Recommendation
In this research, the researcher recommends the following problems for future work:
(1) Studying the existence and uniqueness of the solutions for (QG), in the
subcritical, in the critical cases and in some functional spaces;
(2) Studying the same problem in dimension three;
(3) Studying the Boussinesq system which coupling the equation of the velocity v,

and the equation of the temperature 8 in a different functional spaces.
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