
 
 

Zawia University 

Administration of Postgraduate Studies and Training  

Faculty of science 

Department of Mathematics 

 

Global solutions for the two dimensional Quasi Geostrophic 

Equation in the Besov spaces 𝑩𝟐,𝟏
𝒔 (ℝ𝟐),  with 𝒔 >

𝟑

𝟐
 

 

Submitted by: 

Manal Hasan 

 

Supervised by: 

Dr. Samira Alamin SULAIMAN 

Academic degree: associate professor  

 

 

 

 

A Dissertation Submitted to the Department of Mathematics in Partial Fulfillment of 

the Requirements for the Degree of Master of Science in Mathematics 

 

 

 

2022-2023 



 

 جامعة الزاوية  
العليا والتدريب   اتسإدارة الدرا  

 كلية العلوم  
 قسم الرياضيات 

 
 
  
 

الدالي الحل العام لمعادلة شبه المغناطيسية في بعدين في فضاء بزوف  

 
  
 

 إعداد الطالبة  
 منال حسن حسين الغضبان 

 

 إشراف الدكتورة 
سليمان محمد سميرة الامين    

لدرجة العلمية: أستاذ مشارك ا  

 

ر متطلبات الإجازة العالية الماجستي  ستكماللادمت هذه الرسالة ق   

 
 



 
 

I 

 

 الآية القرآنية 

 

 

  

 

 ِوَاللَّهُ  دَرجََاتٍ العِلْمَ أُوتُوا وَالَّذِينَ  مِنكُمْ آمَنُوا  الَّذِينَ  اللَّهُ يَرْفَع  

   خبَِيرٌ تَعْمَلُونَ بِمَا

 
 " 11الآية "   / المجادلةسورة 

 

 

  



 
 

II 

Acknowledgments 

 

 
Firstly, I give thanks to ALLAH for the protection and the ability to do work. In my 

journey towards this degree. I have found a teacher, a friend, an inspiration, a role model, and 

a pillar of support in my Guide, Dr. Samira Alamin for all her best and valuable advice, time 

and sources to help me achieve the best results. 

I also thank my family who encouraged me and prayed for me throughout the time of 

my research. This thesis is heartily dedicated to my mother, who took the lead to heaven 

before the completion of this work. 

Finally, I thanks to everyone who helped me to complete this work. 

 

 

 

The researcher 

 

 

 

 

  



 
 

III 

Dedication 

 

 

 
I dedicate my dissertation to my father and my mother who always believed in me 

more than, I have ever believed in myself. 

 
To all member of my family and my friends. 

 

 

 

 

 

 



 
 

IV 

Abstract 

 

The main goal of this thesis is to study the two-dimensional quasi-geostrophic 

equation. This equation serves as two-dimensional models arising in geophysical fluid 

dynamics.  

We aim to study the global and local existence and uniqueness result for quasi-

geostrophic equation with initial data ,that is we are interested to study the following system. 

 

{
𝜕𝑡𝜃 + 𝑣 ∙ 𝛻𝜃 + |𝐷|

1
2𝜃 = 0 ,           (𝑥, 𝑡) ∈ ℝ2 × [0,∞[

𝑑𝑖𝑣 𝑣 = 0,
𝜃|𝑡=0 = 𝜃0.

 

 

The problem is solved in many functional spaces, with small initial data. We will 

study the paper [15] and apply these results to our case. More precisely, we will prove the 

problem for  𝜃0 ∈ 𝐵2,1
𝑠 , with 𝑠 >

3

2
, where 𝐵2,1

𝑠  is the Besov space given in Chapter II. Finally, 

combining it with the results of [14] and [15]. 
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General Introduction 

1.1 Background and motivation 

The two dimensional quasi-geostrophic equation are the form 

{
𝜕𝑡𝜃 + 𝑣. ∇𝜃 + |𝐷|

𝛼𝜃 = 0,     (𝑥, 𝑡) ∈ ℝ2 × [0,∞[

𝑑𝑖𝑣 𝑣 = 0,
             (1) 

where 𝜃 is the scalar function represents the potential temperature and the parameter 

𝛼 𝜖 [0,1] . The fractional differential operator  |𝐷| = (−∆)
1

2  is defined by its Fourier 

transform  

ℱ(|𝐷|𝑣) = |𝜉|ℱ(𝑣), 

 The 2𝐷 velocity field  𝑣 =  (𝑣1, 𝑣2) is determined by Riesz transform 𝑅𝑖, ∀𝑖 = 1,2 

of 𝜃, that is  

𝑣 =  (−
 𝜕2
|𝐷|

𝜃 ,
 𝜕1
|𝐷|

𝜃 ) ∶=  (−𝑅2𝜃 ,  𝑅1𝜃). 

The differential operator 𝑣 ∙ ∇ is defined respectively by  

𝑣 ∙ ∇= ∑ 𝑣i2
i=1 ∙ ∂i.   

and the operator 𝑑𝑖𝑣 𝑣 is defined by 

𝑑𝑖𝑣 𝑣 =∑∂i𝑣
i 

2

𝑖=1

 

The first equation of (1) serves as a 2𝐷 models arising in geophysical fluid dynamic 

[20] and the second equation 𝑑𝑖𝑣 𝑣 = 0, describe the incompressibity of the fluid.  

The interesting is to study the global existence results for the initial value problem (IVP) for 

equation (1) with  

 𝜃|𝑡=0 = 𝜃0(𝑥),              (2) 

is specified, that concerned with global existence results for solutions of the  (𝑄𝐺)𝛼: 

  {
𝜕𝑡𝜃 + 𝑣 ∙ 𝛻𝜃 + |𝐷|

𝛼𝜃 = 0
𝑑𝑖𝑣 𝑣 = 0
𝜃|𝑡=0 = 𝜃0.

          (𝑄𝐺)𝛼 

In addition, note that the problem is only solved with a smallness initial data. 

There exist three cases for 𝛼 in this problem. 
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(1)  Sub critical case 𝛼 > 1  

(2)  Critical case 𝛼 = 1 

(3)  Super critical case 𝛼 < 1  

In this category, we precise the notation of critical spaces: let 𝜃 be a solution of 

(𝑄𝐺)𝛼 and 𝛽 > 0, then 𝜃𝛽(𝑡, 𝑥) =
1

𝛽1−𝛼
𝜃(𝛽𝛼𝑡, 𝛽𝑥) is also solution of (𝑄𝐺)𝛼. 

Before going to these cases, let us firstly give the definition of the Besov spaces and 

Sobolev spaces, see [2] and [6]. 

Definition of Besov spaces 

We say that a function 𝑓 in the Besov spaces 𝐵𝑝,𝑟
𝑠 , if  ‖𝑓‖𝐵𝑝,𝑟𝑠 < ∞, where 

‖𝑓‖𝐵𝑝,𝑟𝑠 ≔ (∑2𝑞𝑠𝑟‖∆𝑞𝑓‖𝐿𝑝
𝑟

𝑞

)

1
𝑟

. 

The bloc dyadic operator ∆𝑞 , see chapter II. 

Note that we can define also the Sobolev and Holder spaces by 

𝐵2,2
𝑠 = 𝐻𝑠,       𝐵∞,∞

𝑠 = ∁𝑠. 

We turn now to the cases of  𝛼: 

Case 1 : Sub critical case (𝜶 > 𝟏), the problem of global existence and 

uniqueness for arbitrary initial data is established in various function spaces we refer to [10] 

Case 2 : Critical case (𝜶 = 𝟏), the authors in [9] showed the global existence in 

Sobolev space 𝐻1 under smallness assumption on ‖𝜃0‖𝐿∞ , but the uniqueness is proved for 

initial data in 𝐻2. Many other relevant results can be found in [1], [17], [18]. 

Case 3 : Super-critical case (𝜶 < 𝟏), we had only global results for small 

initial data. In [5], the global existence and uniqueness are established for data in critical 

Besov space 𝐵2,1
2−𝛼 with a small norm of initial data. This result was improved by [16] for 

small initial data in 𝐻𝑠 , 𝑠 ≥ 2 − 𝛼. Wu [25] proved the global existence and uniqueness for 

small initial data in 𝐶𝑟 ∩ 𝐿𝑞 ,  with 𝑟 > 1 and 𝑞 ∈ ]1,+∞[,  where ∁𝑟  is Holder space. 
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Also the authors in [26] was established the global well posedness result for small initial data 

in  𝐵2,∞
𝑠 ∩ 𝐵𝑝,∞

𝑠 , with  𝑠 > 2 − 𝛼 and 𝑝 = 2𝑁. 

Finally, we mentioned the paper [26], where the authors proved the problem of 

existence and uniqueness in this case, that is in the super-critical case (𝛼 < 1) with initial 

data in inhomogeneous critical Besov space  𝐵𝑝,1
1+

2

𝑝
−𝛼
, with  𝑝 ∈ [1,∞]. 

1.2 Main aims of the thesis 

There are numerous study for theses three cases and in a different functional spaces. 

In this research, we interested to the study of the last case of 𝛼, that is for the super-critical 

case (𝛼 < 1). Specially, we will prove a smoothing effects on Besov space �̇�2,1
𝑠+

1

2𝑟, 𝑟 ∈

[1, +∞]. After this, we prove the global existence and uniqueness in 𝐵2,1
𝑠 (ℝ2), with 𝑠 >

3

2
, 

and we note that the proof of our results are different from [14], [15] and others references. 

Our additions are in the proof of our results. Finally, we combine their results with the results 

of [14] and [15]. 

In this step, we need to recall here the Beal-Kato and Majda criterion which is  

the main argument to get global well–posedness results with smooth initial data, 

see[3].  

Therefore, to obtain the global existence, it suffice to use the BKM criterion, which 

allows us to obtain the 𝐿∞ norm of the vorticity 𝜔, and then to obtain the Lipchitz norm of the 

velocity ‖∇𝑣‖𝐿∞.  

This BKM criterion ensuring that the development of finite-time singularity is related 

to the blow up of the 𝐿∞ norm of the verticity (𝜔 = 𝑐𝑢𝑟𝑙𝑣 ), that is   

𝑇 < +∞           Iff       ∫ ‖𝜔(𝑡)‖𝑙∞𝑑𝑡 = ∞,
𝑇

0
 

where the vorticity ω  in dimension two define as the scalar function  

𝜔 = ∇. 𝑣 = 𝜕1𝑣
2 − 𝜕2𝑣

1 . 

Our result reads as follows. 

Theorem 

Let 𝜃0 ∈ 𝐵2,1
𝑠 , 𝑠 >

3

2
, then there exists 𝑇 > 0 such that the (𝑄𝐺)1

2

 equation has a 

unique solution 𝜃 such that 
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𝜃 ∈ 𝐶([0, 𝑇]; 𝐵2,1
𝑠 ) ∩ 𝐿𝑇

1 �̇�2,1
𝑠+

1

2 . 

In other words, there are exists 𝛽 > 0, such that ‖𝜃0‖�̇�∞,11 ≤ 𝛽, therefore we have  

𝑇 = ∞. 

We  note that in the proof our result, we use some embedding’s between Besov space 

and some functional spaces combined with smoothing effects.  

1.3 Organisation of the thesis 

The objectives of the thesis can be summarized as follows: 

In chapter I, we introduce some notations, give the review of functions and 

mathematical concepts. Besides, we recall some functional spaces and finally we present 

some well-known results. 

In chapter II, we recall some basic results on Littlewood-Paley theory and give the 

definition of some functional spaces as Besov space, Holder and Sobolev spaces. Finally, we 

give some useful lemma as Bernstein inequality for a tempered distribution 𝑢 ∈ 𝒮 (where 𝒮 is 

Schwartz space defined in chapter I). 

In chapter III, we give some useful estimates for any smooth solution of linear 

transport-diffusion model given by  

{
𝜕𝑡𝜃 + 𝑣 ∙ ∇𝜃 + |𝐷|

𝛼𝜃 = 𝑓
𝑑𝑖𝑣 𝑣 = 0
𝜃|𝑡=0 = 𝜃0

                    (𝑇𝐷)𝛼 

we will discuss two kinds of estimates that will be used in the next chapter. The first 

is the 𝐿𝑝 energy estimate, ∀𝑝 ∈ [1,∞]. Second, I will prove a smoothing effects which is the 

main result in this chapter. 

In chapter IV, we study some results for the super-critical case that is (𝛼 < 1). We 

prove my main result, and we devised the proof into four steps: a priori estimates, global 

existence, local existence and uniqueness of the solution. Finally, we combine the results of 

[8], [14] and [15]. 
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Chapter I:  

Basic concepts 

1.1 Introduction 
 We will present some notations that will be used later. In addition, we review some 

definitions and mathematical concepts for the functions. we illustrate some subjects related to 

our work of the thesis and give some well-known results.  

1.2 Notations 
In this section, we introduce some notations: 

1- For any positive 𝐴 and 𝐵, the notation 𝐴 ≲ 𝐵 means that there exists a positive 

constant 𝐶 such that 𝐴 ≤ 𝐶𝐵.  

2-For any 𝐴, 𝐵 and 𝐶, we define the commutator [𝐴, 𝐵]𝐶 by the  

[𝐴, 𝐵]𝐶 = 𝐴(𝐵𝐶) − 𝐵(𝐴𝐶). 

3- For any two spaces 𝑋 and 𝑌, any function 𝑓 ∈ 𝑌, we say that  

 𝑋 ↪ 𝑌, if there exists a positive constant 𝐶 > 0, such that 

‖𝑓‖𝑌 ≤ 𝐶‖𝑓‖𝑋 . 

4- For the usual Lebegue space 𝐿𝑝 , 𝑝 ∈ [1,∞], which defined in Definition 1.4.4 

below, we will use the notation 

‖𝑓‖𝐿𝑇
𝑝
𝐿𝑍: = (∫‖𝑓(𝜏)‖𝑍

𝑝𝑑𝜏

𝑇

0

)

1
𝑝

,    ∀ 𝑇 > 0. 

5- We will introduce the following notation:  we denote by 

 

Φ𝑙(𝑡) = 𝐶0𝑒𝑥𝑝(…𝑒𝑥𝑝(𝐶0 𝑡))⏟            
𝑛−𝑡𝑖𝑚𝑒𝑠

 

where 𝐶0, depends only on the initial data and its value may from line to line up to 

some absolute constants. We will make an intensive use of the following trivial facts 

 

∫ Φ𝑙(𝜏)𝑑𝜏
𝑡

0
≤ Φ𝑙(𝑡)    and   exp (∫ Φ𝑙(𝜏)𝑑𝜏

𝑡

0
) ≤ Φ𝑙+1(𝑡). 
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1.3 Review of functions and mathematical concepts: 

In this section, we give some definitions for functions and mathematical concepts.    

Definition 1.3.1 

We say that 𝑓 is bounded if there exists a positive number 𝑀 > 0 such that for any 

𝑥 ∈ 𝑀,  

 |𝑓(𝑥)| ≤ 𝑀.  

Definition 1.3.2 

 Let 𝑓 be a real valued function, we say that 𝑓 satisfies the Lipschitz condition if, 

there exists a constant 𝐶 such that for every 𝑥 and 𝑦, we have 

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐶|𝑥 − 𝑦|.  

Definition 1.3.3 

Let 𝑓 ∶ 𝑋 → 𝑋 be a real valued function, we denote ‖𝑓‖ is the norm of 𝑓 and is 

defined for every 𝑥 ∈ 𝑋, by 

‖𝑓‖ = 𝑠𝑢𝑝‖𝑥‖=1|𝑓(𝑥)|. 

Definition 1.3.4 

The function 𝑓 is called continuous at 𝑥0 ∈ 𝑋,  if for any 휀 > 0, there exists 𝛿 > 0 

depend on 𝑥, and 𝑥0, such that 

‖𝑓(𝑥) − 𝑓(𝑥0)‖ < 휀 Whenever ‖𝑥 − 𝑥0‖ < 𝛿. 

Definition 1.3. 5  

Let(M, A) be a smooth manifold, and f: M → ℝ, a function. 

(1) We say f is smooth at p ∈ M if there exists a chart { φα, Uα, Vα} ∈ A with p ∈ Uα, 

such that the function f o φα
−1: Vα → ℝ is smooth at φα(p). 

(2) We say f is a smooth function on M if it is smooth at every x ∈ M . 

Definition 1.3.6 

 We say that a real valued function 𝑓 is smooth on the closed interval [𝑎, 𝑏], if the 

function 𝑓 and its derivative are continuous on  [𝑎, 𝑏] . 

  We note that 𝑓 is smooth in ℝ  if and only if 𝑓 is smooth in all interval on ℝ.  
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Definition 1.3.7 

 A continuous map 𝑓: 𝑋 → 𝑌 is homeomorphism, if it is bijective and its inverse   is 

continuous.  

  Definition 1.3.8 

  For any integrable function 𝑓, we denote by 𝑓 = ℱ(𝑓) is the Fourier transform of  𝑓, 

where 

𝑓(𝜉) = ℱ(𝑓)  = ∫ 𝑓(𝑥)𝑒−𝑖𝑥𝜉

ℝ𝑑
𝑑𝑥. 

Moreover, the inverse Fourier transform is given by  

𝑓(𝜉) = ℱ−1(𝑓(𝜉)) . 

≔ ∫ 𝑓(𝜉)𝑒𝑖𝑥𝜉
ℝ𝑑

𝑑𝜉. 

  Definition 1.3.9 

 For any two functions 𝑓 and 𝑔, we define the convolution of  𝑓 and 𝑔  by                                           

(𝑓 ∗ 𝑔)(𝑥) = ∫ 𝑓(휁)𝑔(𝑥 − 휁)𝑑휁.

ℝ𝑑

 

 Definition 1.3.10 

We define the flow associate to the velocity 𝑣 by the following: 

𝜓(𝑡, 𝑥) = 𝑥 + ∫ 𝑣(𝜏, 𝜓(𝜏))𝑑𝜏 
𝑡

0
. 

 Definition 1.3.11 

For any function 𝑓, and any points 𝑥 and 𝑥1. Then the Taylor formula of the function 𝑓 is 

given by 

𝑓(𝑥) = (𝑥 − 𝑥1)∫ �́�(𝑠𝑥)𝑑𝑠

1

0

. 
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 1.4 Some functional spaces 

 Here, in this section, we define some functional spaces.  

Definition 1.4.1 

 The space ∁(𝐷) is the space of all continuous functions on any region 𝐷, with norm 

‖. ‖∞  defined as 

‖𝑓(𝑥)‖∞ = 𝑚𝑎𝑥𝑥∈𝐷|𝑓(𝑥)| 

 Definition 1.4.2 

 The space 𝐶0
∞ is the space of all continuous function 𝑓 and differentiable such that 

the space is compact.  

 Definition 1.4.3 (Schwartz space) 

The Schwartz space S(ℝd) is the space of smooth functions 𝑓 on ℝd such that 𝑓 ∈

∁∞, and for all 𝛼 and for any N ∈ ℕ, there exists a constant 𝐶𝑁,𝛼 depend on N and 𝛼, such that            

|𝜕𝛼𝑓(𝑥)| ≤
𝐶𝑁,𝛼

(1 + |𝑥|)−𝑁
. 

Remark 1.4.1 we have the relation between the spaces 𝐶0
∞and Schawrts space 𝑆 

which given by the following embedding: 

𝐶0
∞ ↪ S. 

Definition 1.4.4 (Lebesgue space 𝐿𝑝)        

We define the usual Lebesgue space 𝐿𝑝(ℝd), with 𝑝 ∈ [1,∞[, by the space of all 

continuous real valued functions 𝑓 on ℝd , with norm defined as  

                                             ‖𝑓‖𝐿𝑝(ℝd) ≔ (∫ |𝑓(𝑥)|𝑝𝑑𝑥
ℝ𝑑

)

1

𝑝
< ∞, 

and for 𝑝 = ∞, we have 

‖𝑓‖𝐿∞ = 𝑠𝑢𝑝𝑥|𝑓(𝑥)|. 

Definition 1.4.5 (space 𝑙𝑝) 

For any function 𝑓, we define the 𝑙𝑝(ℝd) ,with 𝑝 ∈ [1,∞), norm of 𝑓 by 

‖𝑓‖𝑙𝑝(ℝd) = (∑ |𝑓(𝑥)|𝑝)
1

𝑝  , for any  𝑥 ∈ ℝ𝑑 

Definition 1.4.6 
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 Let s ∈ ℝ, then the inhomogeneous Sobolev space Hs(ℝd) consists of tempered 

distributions 𝑢 such that �̂� ∈ Lloc
2 (ℝ)𝑑, and  

‖𝑢‖𝐻𝑠
2 : ≝ ∫ (1 + |𝜉|2)𝑠|�̂�(𝜉)|2𝑑𝜉 < ∞ .

ℝ𝑑
 

 Definition 1.4.7 

 Let s ∈ ℝ. The homogeneous Sobolev space �̇�𝑠(ℝ𝑑) is the space of tempered 

distributions 𝑢 over  ℝ𝑑 , such that the Fourier transform of which belongs to 𝐿𝐿𝑜𝑐
1 (ℝ𝑑) and 

satisfies  

‖𝑢‖�̇�𝑠
2 = ∫ |𝜉|2𝑠 |�̂�(𝜉)|2𝑠

ℝ𝑑
𝑑𝜉  < ∞. 

1.5 Some Well-known results: 

In this section, we give some well-known results as young inequality and young 

inequality for convolution. Also recall Holder triangle, and Cauchy Schwartz inequalities. 

Finally, we give lemma of Gronwall, and Leibnitz formula for derivatives. Also, we recall the 

Pareseval identity. 

Lemma 1.5.1 (triangle inequality) 

For any two functions 𝑓 and 𝑔, we have 

‖𝑓(𝑥) + 𝑔(𝑥)‖ ≤ ‖𝑓(𝑥)‖ + ‖𝑔(𝑥)‖. 

 Lemma 1.5.2 (Young inequality)   

  For every  𝑎, 𝑏 > 0  and 𝑟, 𝑠 > 0  then we have the following inequality  

𝑎 𝑏 ≤
𝑎𝑟

𝑟
+
𝑏𝑠

𝑠
. 

  Lemma 1.5.3 (Young inequality for convolution)  

  For any two functions 𝑓 and 𝑔,  such that 𝑓 ∈ 𝐿𝑐 and 𝑔 ∈ 𝐿𝑎 and for any constants 

(𝑎, 𝑏, 𝑐) ∈ [1,∞]3, such that 

1 +
1

𝑏
=
1

𝑐
+
1

𝑎
 . 

 

 

 

 Then 𝑓 ∗ 𝑔 ∈ 𝐿𝑏 , and there exists a positive constant 𝐶, such that  
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‖𝑓 ∗ 𝑔‖𝐿𝑏 ≤ 𝐶‖𝑓‖𝐿𝑐‖𝑔‖𝐿𝑎 .  

  Lemma 1.5.4 (Holder inequality)    

  If  (𝑓, 𝑔) belongs to 𝐿𝑃 × 𝐿𝑞 for any (𝑝, 𝑞, 𝑟) ∈ [1,∞]3 and such that  
1

𝑟
=

1

𝑝
+
1

𝑞
  ,  

then 𝑓𝑔 belongs to 𝐿𝑟and satisfies 

‖𝑓𝑔‖𝐿𝑟 ≤ ‖𝑓‖𝐿𝑝‖𝑔‖𝐿𝑞. 

Lemma 1.5.5 (Cauchy Schwartz inequality)    

Let 𝑓 and 𝑔 be two real continuous functions on the closed interval [𝑎, 𝑏]. Then the 

Cauchy Schwartz inequality is given by    

|∫𝑓(𝑥)𝑔(𝑥)𝑑𝑥

𝑏

𝑎

| ≤ (∫|𝑓(𝑥)|2𝑑𝑥

𝑏

𝑎

)

1
2

(∫|𝑔(𝑥)|2𝑑𝑥

𝑏

𝑎

)

1
2

. 

This gives that,  

‖𝑓𝑔‖𝐿1 ≤ ‖𝑓‖𝐿2 ‖𝑔‖𝐿2 . 

Lemma 1.5.6 (Gronwall’s inequality)  

Let 𝑓 is a nonnegative continuous function on [0, 𝑡], 𝑎 is a real number and let  𝐴 be a 

continuous function on [0, 𝑡]. Suppose also that: 

𝑓(𝑥) ≤ 𝑎 + ∫𝐴(𝜏)𝑓(𝜏)𝑑𝜏.

𝑡

0

 

Then we have 

𝑓(𝑡) ≤ 𝑎 𝑒𝑥𝑝 (∫𝐴(𝜏)𝑑𝜏

𝑡

0

). 

Lemma 1.5.7 (Leibnitz formula) 

Let 𝛼 (𝑥), 𝛽(𝑥) and 𝑓(𝑥, 𝑡) any three functions, then we have Leibnitz’s formula: 

 
𝑑

𝑑𝑥
∫ 𝑓(𝑥, 𝑡) 𝑑𝑡
𝛽(𝑥)

𝛼 (𝑥)
= 𝑓(𝑥, 𝛽(𝑥))  𝛽(𝑥)́ 𝑓(𝑥, 𝛼(𝑥))  𝛼(𝑥)́   
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+ ∫
𝜕

𝜕𝑥
𝑓(𝑥, 𝑡)𝑑𝑡.

  𝛽(𝑥)

𝛼 (𝑥)

 

Lemma 1.5.8 (Parseval Identity) 

For any two functions 𝑓(𝑥) and 𝑔(𝑥), we have the Parseval identity 

〈𝑓(𝑥), 𝑔(𝑥)〉 = 〈𝑓(𝑥), 𝑔(𝑥)̅̅ ̅̅ ̅̅ 〉. 
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Chapter II:  

Littlewood Paley operators 

2.1 Introduction 

Littlewood–Paley theory is a localization procedure in frequency space. The 

Interesting feature of this localization is that the derivatives (or, more generally, Fourier 

multipliers) act almost as homotheties on distributions whose Fourier transforms are 

supported in a ball or an annulus. In this chapter, we define the dyadic decomposition of the 

space ℝ2 and recall the Littlewood-Paley operators. We will prove a Bernstein inequality for 

a tempered distribution 𝑢 with a bloc dyadic ∆̇𝑞 and  𝑆𝑞 (see definition below). we also 

discuss the definition of some functional spaces, and in the next section introduce the 

(homogeneous) paradifferential calculus, and some results which need later. The definition of 

homogeneous and inhomogeneous Besov spaces are detailed, see [2], [6], [7] and [24]. 

Finally, we give the way that the product acts on Besov spaces. 

2.2 Dyadic decomposition 

To introduce Besov spaces which are generalization of Sobolev spaces, we need to 

recall the dyadic decomposition of the whole space see Chemin [2] 𝑎𝑛𝑑 [6]. . 

We review some important lemmas that will be used constantly in the research. 

Definition 2.2.1 

There exists two nonnegative radial functions χ ∈ 𝒟(ℝ2) and φ ∈ 𝒟(ℝ2 ∖ {0}) such 

that, 

1-    𝜒(𝜉) + ∑ 𝜑(2−𝑞𝜉) = 1,   ∀𝑞≥0 𝜉 ∈ ℝ2 , 

2-        ∑ 𝜑(2−𝑞𝜉) = 1,   ∀𝑞∈ℤ 𝜉 ∈ ℝ2 ∖ {0} , 

                3-   |𝑝 − 𝑞| ≥ 2 ⇒ 𝑠𝑢𝑝𝑝 𝜑(2−𝑝) ∩ 𝑠𝑢𝑝𝑝 𝜑(2−𝑞) = ∅, 

4-  𝑞 ≥ 1 ⇒ 𝑠𝑢𝑝𝑝 𝜒 ∩  𝑠𝑢𝑝𝑝 𝜑(2−𝑞 . ) = ∅. 

Definition 2.2.2 

Let 𝑣 ∈ 𝑆′(ℝ2), we define the nonhomogeneous Littlewood-Paley operators by,  

∆−1𝑣 = 𝜒(𝐷)𝑣,   , 
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∆𝑞𝑣 =  𝜑(2
−𝑞𝐷)𝑣,        ∀𝑞 ≥ 0 

Let ℎ = ℱ−1(𝜑) and ℎ1 = ℱ
−1(𝜒). Then we can write the operator ∆𝑞𝑣 as  

∆𝑞𝑣 = 2
2𝑞 ∫ ℎ(

ℝ2

2𝑞𝜉)𝑣(𝜉)𝑑𝜉 . 

 and  

𝑆𝑞𝑣 = ∑ ∆𝑝𝑣

−1≤𝑝≤𝑞−1

. 

 = 22𝑞 ∫ ℎ1(ℝ2
2𝑞𝜉)𝑣(𝜉)𝑑𝜉 , 

and  

∆−1𝑣 = 𝑆0𝑣,            ∆𝑞𝑣 = 0, ∀𝑞 ≤ −2. 

 Definition 2.2.3 

 We define the homogeneous operators by  

∀𝑞 ∈ ℤ   ∆̇𝑞𝑣 = 𝜑(2
−𝑞𝐷)𝑣,  

and  

�̇�𝑞𝑣 = ∑ ∆̇𝑝𝑣.

𝑝≤𝑞−1

 

Remarks 2.2.1 

1- We decompose 𝑣 as :  

𝑣 = ∆−1𝑣 + ∑ ∆𝑞𝑣𝑞≥0   

= ∑ ∆𝑞𝑣,     ∀ 𝑣 ∈ 𝑆
′(ℝ2) .

𝑞≥−1

 

2- We also write  

𝑣 =∑∆�̇�𝑣

𝑞∈ℤ

, ∀ 𝑣 ∈ 𝑆′(ℝ2) Ρ(ℝ2)⁄ , 

        where Ρ(ℝ2) is the space of polynomials. 

3- The Littlewood-Paley decomposition satisfies the property of almost orthogonally:  
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For   any 𝑢, 𝑣 ∈ 𝑆′(ℝ2), 

∆𝑝∆𝑞𝑢 = 0   If   |𝑝 − 𝑞| ≥ 2 

∆𝑝(𝑆𝑞−1𝑢 ∆𝑞𝑣) = 0 If |𝑝 − 𝑞| ≥ 5. 

  4- The operators ∆𝑞 and 𝑆𝑞 map continuously 𝐿𝑝 into itself uniformly with respect to 𝑞 and 

𝑝.  

 5- We have   ∆𝑞= ∆̇𝑞  , ∀ 𝑞 ∈ ℕ and 𝑆𝑞 coincides with �̇�𝑞 on tempered distributions modulo 

polynomials. 

The following result is needed, see [6] and [7]. 

Lemma 2.2.1 

For every function 𝑓 ∈ 𝑆 , where 𝑆 is the space of Schwartz such that  𝑓 ∈ 𝐿1 ∩ 𝐿∞ 

and for every  1 < 𝑐 < ∞ , then we have  𝑓 ∈ 𝐿𝑐 and (1 + |. |2)𝑑𝜕𝛼 is bounded. 

 A further important result that will be constantly used here so called Bernstein 

inequalities. Note that [7] proved this inequality for any  tempered distribution 𝑢, and the 

supervisor of this thesis S. Sulaiman [8] and [23], proved the same inequality for the bloc 

dyadic 𝑆𝑞 and ∆̇𝑞 , we will give here a complete proof.   

 Lemma 2.2.2 (Bernstein lemma) 

 There exists a constant  𝐶 > 0 such that for all 𝑞 ∈ ℤ, 𝑘 ∈ ℕ and for every tempered 

distribution 𝑢 we have  

𝑠𝑢𝑝|𝛼|=𝑘‖𝜕
𝛼𝑆𝑞𝑢‖𝐿𝑏 ≤ 𝐶

𝑘2
𝑞(𝑘+2(

1

𝑎
−
1

𝑏
))
‖𝑆𝑞𝑢‖𝐿𝑎  ,       𝑏 ≥ 𝑎 ≥ 1    

(2.1)   

     𝐶−𝑘2𝑞𝑘‖∆̇𝑞𝑢‖𝐿𝑎 ≤ 𝑠𝑢𝑝|𝛼|=𝑘‖𝜕
𝛼∆̇𝑞𝑢‖𝐿𝑎 ≤ 𝐶

𝑘2𝑞𝑘‖∆̇𝑞𝑢‖𝐿𝑎           
(2.2)                   

 Proof of  (𝟐. 𝟏) 

 If  𝜑 ∈ 𝐶0
∞(ℝ𝑑) such that 𝜑 ≡ 1 in the neighbourhood of the ball of center 0  and 

radius 𝑟1. If also 𝜑1 ∈ 𝐶0
∞(ℝ𝑑) such that 𝜑1 ≡ 1 in the neighbourhood of 𝜑, then we have  

𝑆𝑞𝑢 = 𝜑1(2
−𝑞𝐷)𝑆𝑞𝑢 . 

 Then, we can write   

𝑆𝑞𝑢 = ℱ
−1 (𝜑1(2

−𝑞𝐷)ℱ(𝑆𝑞𝑢)) = ℱ
−1(𝜑1(2

−𝑞𝐷)) ∗ 𝑆𝑞𝑢 . 
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 We get by the Fourier transform with a simple calculation,  

ℱ−1(𝜑1(2
−𝑞𝐷)) = ∫ 𝜑1(2

−𝑞휁)𝑒𝑖𝑥𝜁𝑑휁

ℝ𝑑

= ∫ 2𝑞𝑑𝜑1(휁)𝑒
𝑖𝑥2𝑞𝜁𝑑휁

ℝ𝑑

 

     = 2𝑞𝑑ℱ−1(𝜑1(휁)) ≔ 2𝑞𝑑ℎ(2𝑞𝑥),  

Where  

ℎ(2𝑞𝑥) = ℱ−1(𝜑1(휁)) 

 This gives that  

𝑆𝑞𝑢 = 2
𝑞𝑑ℎ(2𝑞 . ) ∗ 𝑆𝑞𝑢 . 

 Therefore  

𝜕𝛼𝑆𝑞𝑢 = 2
𝑞(𝑑+|𝛼|)𝜕𝛼ℎ(2𝑞 . ) ∗ 𝑆𝑞𝑢           (2.3)              

 Taking the 𝐿𝑝 norm of (2.3) and applying young inequality for convolution Lemma 

1.5.3,   we find with (
1

𝑏
+ 1 =

1

𝑐
+
1

𝑎
) ,that  

‖𝜕𝛼𝑆𝑞𝑢‖𝐿𝑝 ≤ 2
𝑞(𝑑+|𝛼|)‖𝜕𝛼ℎ(2𝑞 . )‖𝐿𝑐‖𝑆𝑞𝑢‖𝐿𝑎  , 

                                                        ≤ 2𝑞(|𝛼|+𝑑)2−𝑞
𝑑

𝑐‖𝜕𝛼ℎ‖𝐿𝑐‖𝑆𝑞𝑢‖𝐿𝑎
 

                                                           ≤ 2
𝑞(|𝛼|+𝑑(

1

𝑎
−
1

𝑏
))
‖𝜕𝛼ℎ‖𝐿𝑐‖𝑆𝑞𝑢‖𝐿𝑎     (2.4) 

Taking the sup on |𝛼| = 𝑘, of the inequality (2.4), we obtain  

𝑠𝑢𝑝|𝛼|=𝑘‖𝜕
𝛼𝑆𝑞𝑢‖𝐿𝑏 ≤

(2𝑞
(𝑘+𝑑)(

1
𝑎
−
1
𝑏
)) ‖𝜕𝛼ℎ‖𝐿𝑐‖𝑆𝑞𝑢‖𝐿𝑎        (2.5) 

It remains now to prove that‖𝜕𝛼ℎ‖𝐿𝑐 ≤ 𝐶
𝑘. For this purpose, we use Lemma 2.2.1, 

then we have  

‖𝜕𝛼ℎ‖𝐿𝑐 ≤ ‖𝜕
𝛼ℎ‖𝐿1 + ‖𝜕

𝛼ℎ‖𝐿∞            (2.6)             

Now since h ∈ S , ℎ = ℱ−1φ and φ ∈ C0
∞(ℝd) ↪ S , then I can  use Lemma 2.2.1, 

that ℎ is bounded and (1 + |. |2)d ∂αℎ is also bounded. Therefore, we have 

‖𝜕𝛼ℎ‖𝐿1 = ∫|𝜕
𝛼ℎ(𝑥)|𝑑𝑥 ≤ ∫(1 + |. |2)−𝑑 (1 + |. |2)𝑑|𝜕𝛼ℎ|𝑑𝑥 

                                               ≤ ‖(1 + |. |2)−𝑑‖𝐿1‖(1 + |. |
2)𝑑𝜕𝛼ℎ‖𝐿∞ 
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        ≤ 𝐶‖(1 + |. |2)𝑑𝜕𝛼ℎ‖𝐿∞                       (2.7)                       

Also  

‖𝜕𝛼ℎ‖𝐿∞ = 𝑠𝑢𝑝𝑥|𝜕
𝛼ℎ(𝑥)| ≤ 𝑠𝑢𝑝𝑥(1 + |. |

2)𝑑|𝜕𝛼ℎ| 

       ≤ 𝐶‖(1 + |. |2)𝑑𝜕𝛼ℎ‖𝐿∞            (2.8)                

Putting together (2.7) and (2.8) in (2.6),  we get  

‖𝜕𝛼ℎ‖𝐿𝑐 ≤ 𝐶
2‖(1 + |. |2)𝑑𝜕𝛼ℎ‖𝐿∞ ≤ 𝐶

𝑘, 𝑘 ∈ ℕ . 

This gives in (2.5), that 

𝑠𝑢𝑝|𝛼|=𝑘‖𝜕
𝛼𝑆𝑞𝑢‖𝐿𝑏 ≤ 𝐶

𝑘2
𝑞(𝑘+𝑑(

1
𝑎
−
1
𝑏
))
‖𝑆𝑞𝑢‖𝐿𝑎 . 

 Proof of  (𝟐. 𝟐) of Lemme 2.2.2 

 Let 𝜑1 ∈ 𝐶0
∞(ℝ𝑑) such that  𝜑1 ≡ 1 in the neighbourhood of 𝜑 .Then we have  

∆̇𝑞𝑢 =  𝜑1(2
−𝑞𝐷)∆̇𝑞𝑢                 (2.9) 

 We take the Fourier transform of (2.9), 

ℱ(∆̇𝑞𝑢) = 𝜑1(2
−𝑞휁)ℱ(∆̇𝑞𝑢) , 

 I can Take the inverse Fourier transform, we obtain  

∆̇𝑞𝑢(𝑥) = ℱ
−1 (𝜑1(2

−𝑞휁)ℱ(∆̇𝑞𝑢)(휁))         (2.10)             

 where,  

𝜑1(2
−𝑞휁) =∑ (𝑖휁)𝛼

|𝛼|=𝑘
|휁|−2𝑘(−𝑖휁)𝛼𝜑1(2

−𝑞휁) 

Putting this last inequality in (2.10), we get  

∆̇𝑞𝑢(𝑥) = ∑ ℱ−1 ((𝑖휁)𝛼|휁|−2𝑘(−𝑖휁)𝛼𝜑1(2
−𝑞휁)ℱ(∆̇𝑞𝑢)(휁))

|𝛼|=𝑘

 

       = ∑ ℱ−1 ((𝑖휁)𝛼|휁|−2𝑘𝜑1(2
−𝑞휁)ℱ(𝜕𝛼∆̇𝑞𝑢)(휁))

|𝛼|=𝑘

 

                   = ∑ ℱ−1((𝑖휁)𝛼|휁|−2𝑘𝜑1(2
−𝑞휁))|𝛼|=𝑘 ∗ 𝜕𝛼∆̇𝑞𝑢 (𝑥)     (2.11)             
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where, 

ℱ−1((𝑖휁)𝛼|휁|−2𝑘𝜑1(2
−𝑞휁) = ∫

(𝑖휁)𝛼

|휁|2𝑘
𝜑1(2

−𝑞휁)𝑒𝑖𝑥𝜁𝑑휁 

                                           = ∫
(𝑖2𝑞𝜁)𝛼

|2𝑞𝜁|2𝑘
𝜑1(휁)𝑒

𝑖𝑥2𝑞𝑑𝜁𝑑휁 

                                                                             = 2𝑞(𝑑+|𝛼|−2𝑘 ∫
(𝑖𝜁)𝛼

|𝜁|2𝑘
𝜑1(휁)𝑒

𝑖𝑥2𝑞𝑑𝜁𝑑휁 

                                       = 2𝑞(𝑑+|𝛼|−2𝑘) ℎ𝑘(2
𝑞𝑥),  

where  

ℎ𝑘(2
𝑞𝑥) = ∫

(𝑖휁)𝛼

|휁|2𝑘
𝜑1(휁)𝑒

𝑖𝑥2𝑞𝑑𝜁𝑑휁 

 Then we get in view of (2.11), that  

∆̇𝑞𝑢(𝑥) = 2
𝑞(𝑑+|𝛼|−2𝑘) ℎ𝑘(2

𝑞 . ) ∗ 𝜕𝛼∆̇𝑞𝑢 

 This is given by Lemma1.5.3 for convolution, that  

‖∆̇𝑞𝑢‖𝐿𝑎 ≤ 2
𝑞(𝑑+|𝛼|−2𝑘)‖ℎ𝑘(2

𝑞 . )‖𝐿1‖𝜕
𝛼∆̇𝑞𝑢‖𝐿𝑎         (2.12) 

 Since, we have  

‖ℎ𝑘(2
𝑞 . )‖𝐿1 = ∫|ℎ𝑘(2

𝑞𝑥)| 𝑑𝑥 

  Let 𝑦 ≔ 2𝑞𝑥, then we get  

‖ℎ𝑘(2
𝑞 . )‖𝐿1 = ∫|ℎ𝑘(𝑦)|2

−𝑞𝑑𝑑𝑦 = 2−𝑞𝑑‖ℎ𝑘‖𝐿1        (2.13) 

 Recall that, ℎ = ℱ−1φ and φ ∈ C0
∞(ℝd) ↪ S , then we have ℎ ∈ S  , this gives   by 

using   Lemma 2.2.1, ℎ is bounded and (1 + |. |2)d ∂αℎ is also bounded.   Therefore  

‖ℎ𝑘‖𝐿1 ≤ 𝐶
𝑘           (2.14) 

 Putting together (2.13) and  (2.14) into  (2.12), we find 

‖∆̇𝑞𝑢‖𝐿𝑎 ≤ 𝐶
𝑘2𝑞(𝑑+|𝛼|−2𝑘)‖𝜕𝛼∆̇𝑞𝑢‖𝐿𝑎              

(2.15) 

 Taking the supremum on |𝛼| = 𝑘, of the inequality (2.15), yields to 

𝐶−𝑘2𝑞𝑘‖∆̇𝑞𝑢‖𝐿𝑎 ≤ 𝑠𝑢𝑝|𝛼|=𝑘‖𝜕
𝛼∆̇𝑞𝑢‖𝐿𝑎 .  
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 The proof of the lemma is now complete.  

The following lemma is useful to our result, see [15], and we will give here the proof. 

Lemma 2.2.3  

Let 𝑓 be a function in Schwartz class and 𝜓 a diffeomorphism preserving Lebesgue 

measure, then for all  𝑝 ∈ [1,+∞], and for all  𝑗, 𝑞 ∈ ℤ,  we have 

 

‖∆̇𝑗(∆̇𝑞𝑓𝑜𝜓)‖𝐿𝑝 ≤ 𝐶2
|𝑗−𝑞|‖∇𝜓𝛼(𝑗,𝑞)‖

𝐿∞
‖∆̇𝑞𝑓‖𝐿𝑝  , 

with  

𝛼(𝑗, 𝑞) = 𝑠𝑖𝑔𝑛(𝑗 − 𝑞). 

 Proof 

 To prove this result, we distinguish two cases: 𝑗 ≥ 𝑞 and 𝑗 < 𝑞.  

 Case 1: 𝒋 ≥ 𝒒.  

 For this, we use Bernstein’s inequality, to get  

 

‖∆̇𝑗(∆̇𝑞𝑓𝑜𝜓)‖𝐿𝑝 ≲ 2
−𝑗‖∇∆̇𝑗(∆̇𝑞𝑓𝑜𝜓)‖𝐿𝑝          

(2.16) 

 It suffices to combine Leibnitz formula again with Bernstein’s inequality and Holder 

inequality. 

‖∇∆̇𝑗(∆̇𝑞𝑓𝑜𝜓)‖𝐿𝑝 ≲ ‖∇∆̇𝑞𝑓‖𝐿𝑝
‖∇𝜓‖𝐿∞ 

                                                ≲ 2𝑞‖∆̇𝑞𝑓‖𝐿𝑝
‖∇𝜓‖𝐿∞           (2.17)                                   

 Substitute (2.17) into (2.16), get 

‖∆̇𝑗(∆̇𝑞𝑓𝑜𝜓)‖𝐿𝑝 ≲ 2
𝑞−𝑗‖∆̇𝑞𝑓‖𝐿𝑝

‖𝛻𝜓‖𝐿∞ . 

This yields to the desired inequality. 

 

 Case 2: 𝒋 < 𝒒  

 Will use the following duality result 

 

‖∆̇𝑗(∆̇𝑞𝑓𝑜𝜓)‖𝐿𝑝
= 𝑠𝑢𝑝‖𝑔‖

𝐿𝑝1≤1
|〈∆̇𝑗(∆̇𝑞𝑓𝑜𝜓), 𝑔〉|           (2.18) 

 

 with 
1

𝑝
+

1

𝑝1
= 1 . Let 𝜑1𝜖𝐶0

∞(ℝ𝑑)be supported in a ring and such that 𝜑1 ≡ 1  on 𝐶. 

We set ∆̅̇𝑞𝑓 ≔ 𝜑1(2
−𝑞𝐷)𝑓. Then we have ∆̇𝑞𝑓 = ∆̇𝑞

̅̅ ̅∆̇𝑞𝑓. Combining this fact with 

Parseval’s identity and the preserving measure by the flow 
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|〈∆̇𝒋(∆̇𝒒𝑓𝑜𝜓), 𝑔〉| = |〈∆̇𝒒𝑓, ∆̅̇𝑞 ((∆̇𝒋𝑔)𝑜𝜓
−1)〉|. 

 Therefore, we obtain 

|〈∆̇𝑗(∆̇𝑞𝑓𝑜𝜓), 𝑔〉| ≤ ‖∆̇𝑞𝑓‖𝐿𝑝 ‖∆̅̇𝑞 ((∆̇𝑗𝑔)𝑜𝜓
−1)‖

𝐿𝑝1
 

 This implies in view of Bernstein’s inequality and Holder inequality 

 

|〈∆̇𝑗(∆̇𝑞𝑓𝑜𝜓), 𝑔〉| ≲ ‖∆̇𝑞𝑓‖𝐿𝑝2
𝑗−𝑞‖∇𝜓−1‖𝐿∞‖∆̇𝑗𝑔‖𝐿𝑝1        

(2.19)  

 

  Substitute (2.19) into (2.18), we get  

 

‖∆̇𝑗(∆̇𝑞𝑓𝑜𝜓)‖𝐿𝑝 ≲ ‖∆̇𝒒𝑓‖𝐿𝑝
2𝑗−𝑞‖∇𝜓−1‖𝐿∞‖𝑔‖𝐿𝑝1 . 

 It completes the proof. 

2.3 Homogeneous and Inhomogeneous Besov space 

 Now will define the homogeneous and inhomogeneous Besov spaces by using 

Littlewood-Paley operators. We recall also the definition of Chemin Lerner space and give 

some results that will need later.  

 Definition 2.3.1 

 Let 𝑠 ∈ ℝ and 1 ≤ 𝑝, 𝑟 ≤ ∞. The inhomogeneous Besov space 𝐵𝑝,𝑟
𝑠  is defined by 

𝐵𝑝,𝑟
𝑠 = {𝑓 ∈ 𝑆′(ℝ2) ≔ ‖𝑓‖𝐵𝑝,𝑟𝑠 < ∞}, 

where  

‖𝑓‖𝐵𝑝,𝑟𝑠 ≔ ‖2𝑞𝑠‖∆𝑞𝑓‖𝐿𝑝‖ℓ𝑟
. 

 We define also the homogeneous norm 

‖𝑓‖�̇�𝑝,𝑟𝑠 ≔ ‖2𝑞𝑠‖∆̇𝑞𝑓‖𝐿𝑝‖ℓ𝑟(ℤ)
. 

 The two spaces 𝐻𝑠 and 𝐵2,2
𝑠  are equal and we have 

1

𝐶|𝑠|+1
‖𝑢‖𝐵2,2

𝑠 ≤ ‖𝑢‖𝐻𝑠 ≤ 𝐶|𝑠|+1‖𝑢‖𝐵2,2
𝑠 . 

Remark 2.3.1  

We have also the embedding 

𝐵𝑝1,𝑟1
𝑠 ↪ 𝐵𝑝2,𝑟2

𝑠+𝑑(
1
𝑝2
−
1
𝑝1
)
,     𝑝1 ≤ 𝑝2      𝑎𝑛𝑑      𝑟1 ≤, 𝑟2.  
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Definition 2.3.2  

 Let 𝑇 > 0 and 𝜌 ≥ 1, we denote by 𝐿𝑇
𝜌
𝐵𝑝,𝑟
𝑠  the space of distribution 𝑓 such that 

‖𝑓‖𝐿𝑇
𝜌
𝐵𝑝,𝑟
𝑠 ≔ ‖(2𝑞𝑠‖∆𝑞𝑓‖𝐿𝑝)ℓ

𝑟‖
𝐿𝑇
𝜌
< +∞. 

 Besides the usual mixed space 𝐿𝑇
𝜌
𝐵𝑝,𝑟
𝑠 , need Chemin-Lerner space �̃�𝑇

𝜌
𝐵𝑝,𝑟
𝑠  which 

defined as the set of all distributions 𝑓 satisfying 

  

‖𝑓‖�̃�𝑇
𝜌
𝐵𝑝,𝑟
𝑠 ≔ ‖ 2𝑞𝑠‖∆𝑞𝑓‖𝐿𝑇

𝜌
𝐿𝑝
‖
ℓ𝑟
< +∞. 

 The relation between these spaces are detailed in the following lemma, which is a 

direct consequence of the Minkowski’s inequality. 

 Lemma 2.3.1  

 If  𝑠 ∈ ℝ , 휀 > 0 and  (𝜌, 𝑝, 𝑟) ∈ [1,∞]3, then we have 

𝐿𝑇
𝜌
𝐵𝑝,𝑟
𝑠 ↪ �̃�𝑇

𝜌
𝐵𝑝,𝑟
𝑠 ↪ 𝐿𝑇

𝜌
𝐵𝑝,𝑟
𝑠−𝜀 , if 𝑟 ≥ 𝜌 and 

𝐿𝑇
𝜌
𝐵𝑝,𝑟
𝑠+𝜀 ↪ �̃�𝑇

𝜌
𝐵𝑝,𝑟
𝑠 ↪ 𝐿𝑇

𝜌
𝐵𝑝,𝑟
𝑠  , if 𝜌 ≥ 𝑟. 

 2.4 Paradifferential calculus  

  In this section, we study the way that the product acts on Besov spaces see Chemin 

[2] and Bahouri [6]. 

 

Definition 2.4.1 

 We denote by 𝑇𝑢𝑣 the following bilinear operator: 

 

𝑇𝑢𝑣 =∑ 𝑆𝑞−1𝑢 ∆𝑞𝑣.
𝑞

  

The remainder of 𝑢 and 𝑣 denoted by 𝑅(𝑢, 𝑣) is given by the following bilinear 

operator: 

𝑅(𝑢, 𝑣) =∑ ∆𝑞𝑢 ∆𝑞′𝑣.
|𝑞−𝑞′|≤1

 

 Just by looking at the definition, it is clear that 

𝑢𝑣 = 𝑇𝑢𝑣 + 𝑇𝑣𝑢 + 𝑅(𝑢, 𝑣). 

 We need also to the following result [6] and [15], for a proof. 
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Lemma 2.4.1 

 Let (𝑝, 𝑎) ∈ [1,∞]2, and 𝑣 be a divergence free vector field of  ℝ2. Assume in 

addition that 𝑎 and 𝑏 such that 
1

𝑎
+
1

𝑏
= 1 . Then we have 

∑2
𝑞
2‖[∆̇𝑞 , 𝑣. ∇]𝑢‖𝐿𝑡1𝐿𝑝

≲ ‖𝑣‖
�̃�𝑡
𝑎�̇�𝑝,1

3
4

𝑞∈ℤ

‖𝑢‖
�̃�𝑡
𝑏�̇�𝑝,1

3
4
. 

Moreover, we have for 𝑠 ∈ ]−1,1[, 

∑2𝑞𝑠‖[∆̇𝑞, 𝑣. ∇]𝑢‖𝐿𝑝
𝑞∈ℤ

≲ ‖∇𝑣‖𝐿∞‖𝑢‖�̇�𝑝,1𝑠 . 

The following see result is useful to prove the uniqueness of solution of our result, see 

[15], and we will give here the proof.  

 Proposition 2.4.1 

 Let 𝑣 be a vector field with divergence 𝑣 = 0 and 𝜃 be any smooth function. Then 

there exists a constant 𝐶 > 0 such that  

‖𝑣. ∇𝜃‖�̇�∞,10 ≤ 𝐶 ‖𝑣‖�̇�∞,10 ‖𝜃‖�̇�∞,11  

 Proof 

 We decompose 𝑣. ∇𝜃 as: 

 

𝑣. ∇𝜃 = 𝑇𝑣𝜃 + 𝑇𝛻𝜃𝑣 + 𝑅(𝑣, 𝛻𝜃), 

where, 

𝑇𝑣. ∇𝜃 =∑�̇�𝑞−1𝑣∇∆̇𝑞𝜃,

𝑞∈ℤ

 

𝑇∇𝜃𝑣 =∑�̇�𝑞−1𝛻𝜃∆̇𝑞𝑣,

𝑞

 

and 

𝑅(𝑣, 𝛻𝜃) =∑∆̇𝑞𝑣∆̇𝑞+𝑖𝛻𝜃
𝑞∈ℤ
𝑖∈ℤ

. 

Therefore 

‖𝑣. ∇𝜃‖�̇�∞,10 ≲ ‖𝑇𝑣. ∇𝜃‖�̇�∞,10 + ‖𝑇𝛻𝜃𝑣‖�̇�∞,10 + ‖𝑅(𝑣, 𝛻𝜃)‖�̇�∞,10  

    ≔ I + II + III                                 (2.20)   

For I , we have from the definition of Besov space �̇�∞,1
0  and Bernstein inequality, that   

‖𝐼‖�̇�∞,10 = ‖𝑇𝑣. ∇𝜃‖�̇�∞,10 ≤∑‖�̇�𝑞−1𝑣𝛻∆̇𝑞𝜃‖𝐿∞
𝑞∈ℤ
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≲∑‖�̇�𝑞𝑣‖𝐿∞
𝑞∈ℤ

‖𝛻∆̇𝑞𝜃‖𝐿∞ 

 ≲ ∑‖�̇�𝑞𝑣‖𝐿∞2
𝑞

𝑞∈ℤ

‖∆̇𝑞𝜃‖𝐿∞ 

      ≲ ‖𝑣‖�̇�∞,10 ‖𝜃‖�̇�∞,11         (2.21)   

By the same way, we get for 𝐼𝐼, that is  

‖𝐼𝐼‖�̇�∞,10 =∑‖�̇�𝑞−1𝛻𝜃∆̇𝑞𝑣‖�̇�∞,10

𝑞∈ℤ

 

                          ≲ ∑‖�̇�𝑞−1𝛻𝜃‖𝐿∞
𝑞∈ℤ

‖∆̇𝑞𝑣‖𝐿∞ 

      ≲ ‖𝛻𝜃‖𝐿∞‖𝑣‖�̇�∞,10  

                   ≲ ∑‖∆̇𝑞𝛻𝜃‖𝐿∞
‖𝑣‖�̇�∞,10 .

𝑞

 

Using again Bernstein inequality, we obtain 

‖𝐼𝐼‖�̇�∞,10 ≲∑2𝑞‖∆̇𝑞𝜃‖𝐿∞
‖𝑣‖�̇�∞,10

𝑞

 

                   ≲ ‖𝜃‖�̇�∞,11 ‖𝑣‖�̇�∞,10      (2.22)     

  For the remainder term 𝐼𝐼𝐼, use Bernstein inequality again 

 

‖𝐼𝐼𝐼‖�̇�∞,10 = ‖𝑅(𝑣, 𝛻𝜃)‖�̇�∞,10 ≤∑‖∆̇𝑗𝑅(𝑣, 𝛻𝜃)‖𝐿∞
𝑗∈ℤ

 

≤∑‖∆̇𝑗 (∆̇𝑞𝑣∆̇𝑞+𝑖𝛻𝜃)‖𝐿∞
𝑗∈ℤ

 

             ≲ ∑ 2𝑗‖∆̇𝑞𝑣‖𝐿∞‖∆̇𝑞+𝑖𝜃)‖𝐿∞
𝑞≥𝑗−3

𝑖∈{∓1,0}

 

                     ≲ ∑ 2𝑗−𝑞‖∆̇𝑞𝑣‖𝐿∞2
𝑞‖∆̇𝑞+𝑖𝜃)‖𝐿∞

𝑞≥𝑗−3

𝑖∈{∓1,0}

 

             ≲ ‖𝑣‖�̇�∞,10 ‖𝜃‖�̇�∞,11                     (2.23)  

Combining now (2.21), (2.22), (2.23),  and (2.20),  find 

‖𝑣. ∇𝜃‖�̇�∞,10 ≲ ‖𝑣‖�̇�∞,10 ‖𝜃‖�̇�∞,11  

Now the proof of the proposition is complete.    
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Chapter III:  

Around a transport-diffusion equations 

3.1 Introduction 

 Transport equations arise in many mathematical problems and, in particular, in most 

partial differential equations related to fluid mechanics. Although the velocity field 𝑣 and the 

source term 𝑔 may depend (nonlinearly) on 𝑓, having a good theory for linear transport 

equations is an important first step for studying such partial differential equations. 

This chapter is devoted to the study of the following class of transport equations 

 

{
𝜕𝑡𝜃 + 𝑣 ∙ 𝛻𝜃 + |𝐷|

𝛼𝜃 = 𝑓
𝜃|𝑡=0 = 𝜃0,

                      (𝑇𝐷)𝛼 

 

 where 𝜃0, 𝑓 and 𝑣 stand for given initial data, external force, and vector field, 

 respectively. We aim to state some useful estimates for the dissipative term  |𝐷|𝛼. We   

discuss also two kinds of estimates for (𝑇𝐷)𝛼 as 𝐿𝑝 estimate and smoothing effects. 

 3.2 Some estimation for the dissipative term |𝑫|𝜶  

 In this section, will give some useful estimates for any smooth solution of linear 

transport-diffusion model (𝑇𝐷)𝛼. The proof of the following result can be found in [15]. 

 Proposition 3.2.1 

 If 𝑓 ∈ �̇�2,1
𝛼  such that 𝛼 ∈ [0,1[, and let 𝜓 be a Libshitz measure-preserving 

homeomorphism on ℝ𝑑 . Then there exists a positive constant 𝐶𝛼, depend only on 𝛼, and such 

that  

 

‖|𝐷|𝛼 (𝑓𝑜 𝜓) − (|𝐷|𝛼𝑓) 𝑜 𝜓‖𝐿2 ≤ 𝐶𝑒
𝑉(𝑡)𝑉(𝑡)2𝛼𝑞‖𝑓‖𝐿2 ,  

 with 

𝑉(𝑡) ≔ ‖∇𝑣‖𝐿𝑡1𝐿∞ . 

 Now, will prove the following result which describes the action of the semi group 

operator 𝑒−𝑡|𝐷|
𝛼
on distribution whose Fourier transform is supported in a ring, see [2] , [15] 

and [21]. 
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 Proposition 3.2.2 

 Let 𝑝 ∈ [1, +∞] and (𝑡, 𝜆) any couple of positive real numbers. Suppose also  that 

𝛼𝜖ℝ+ and 𝑣 be a zero divergence, with 𝑠𝑢𝑝𝑝 ℱ𝑣 in included in a ring 𝐶. Then there exists a 

positive constant 𝑐 such that 

 

‖𝑒−𝑡|𝐷|
𝛼
𝑣‖

𝐿𝑝
≤ 𝑐𝑒−𝑐

−1𝑡𝜆𝛼‖𝑣‖𝐿𝑝 . 

 Proof 

 let 𝜑 in 𝐷(ℝ𝑑 ∖ {0} , such that 𝜑 ≡ 1, near the ring 𝐶, then we can write 

𝑒𝑡|𝐷|
𝛼
𝑣 = 𝜑 (

1

𝜆
|𝐷|) 𝑒𝑡|𝐷|

𝛼
𝑣 = ℱ−1 (𝜑 (

1

𝜆
𝜉) 𝑒−𝑡|𝜉|

𝛼
𝑣(𝜉)) 

                                         = ℱ−1(𝜑 (
1

𝜆
𝜉) 𝑒−𝑡|𝜉|

𝛼
) ∗ ℱ−1(�̂�(𝜉)) 

                                         ∶= 𝑔𝜆(𝑡, 𝑥) ∗ 𝑣,             (3.1)              

where, 

𝑔𝜆(𝑡, 𝑥) = ℱ
−1 (𝜑 (

1

𝜆
𝜉) 𝑒−𝑡|𝜉|

𝛼
) =

1

(2𝜋)𝑑
∫ 𝑒𝑖𝑥𝜉 . 𝑒−𝑡|𝜉|

𝛼
𝜑 (
1

𝜆
𝜉)  𝑑𝜉

ℝ𝑑

 

 Taking the 𝐿𝑝 of (3.1)  get  

‖𝑒𝑡|𝐷|
𝛼
𝑣‖

𝐿𝑝
= ‖𝑔𝜆(𝑡, 𝑥) ∗ 𝑣‖𝐿𝑝 . 

 

 Using lemma 1.5.3 ( Young inequality for convolution) , we obtain that 

 

‖𝑒𝑡|𝐷|
𝛼
𝑢‖

𝐿𝑝
≤ 𝑐‖𝑔𝜆‖𝐿1‖𝑣‖𝐿𝑝                        (3.2)  

                     

 It remains then to estimate ‖𝑔𝜆‖𝐿1 , for this purpose, since we have 

       𝑔𝜆(𝑡, 𝑥) =
 1

(2𝜋)𝑑
∫ 𝑒𝑖𝑥𝜉−𝑡|𝜉|

𝛼
𝜑 (
1

𝜆
𝜉)  𝑑𝜉

ℝ𝑑

. 

Taking the  𝐿1 norm of both sides of last equality, and using lemma 1.5.5 (Cauchy 

Schwartz inequality), we get 

‖𝑔𝜆‖𝐿1 ≤ ∫|𝑔𝜆(𝑥)|

ℝ𝑑

𝑑𝑥 ≤ ∫((1 + |𝑥|2)−𝑑 (1 + |𝑥|2)𝑑|𝑔𝜆(𝑥)|)𝑑𝑥

ℝ𝑑

 

 

                                                            ≤ ‖(1 + |𝑥|2)−𝑑‖𝐿1‖(1 + |𝑥|
2)𝑑𝑔𝜆‖𝐿∞ 
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                                      ≤ 𝐶‖(1 + |𝑥|2)𝑑𝑔𝜆(𝑥)‖𝐿∞                    (3.3)       

 

Thus, we have  

 

‖(1 + |𝑥|2)𝑑𝑔(𝑥)‖𝐿∞ = 𝑠𝑢𝑝𝑥|(1 + |𝑥|
2)𝑑𝑔(𝑥)|                (3.4) 

Since we have 

       𝑔𝜆(𝑡, 𝑥) =
1

(2𝜋)𝑑
∫ 𝑒𝑖𝑥𝜉−𝑡|𝜉|

𝛼
𝜑 (
1

𝜆
𝜉)  𝑑𝜉

ℝ𝑑

. 

 Let 𝑥 =
1

𝜆
𝜉, and we set 

𝐺𝜆(𝑡, 𝑥) ≔ 𝜆−𝑑𝑔𝜆 (𝑡,
𝑥

𝜆
) =

1

(2𝜋)𝑑
∫ 𝑒𝑖𝑥𝜉−𝑡𝜆

𝛼|𝜉|𝛼𝜑(𝜉) 𝑑𝜉

ℝ𝑑

𝑔(𝑡, 𝑥). 

 Thus 

(1 + |𝑥|2)𝑑𝐺𝜆(𝑥) =
1

(2𝜋)𝑑
∫ (𝐼𝑑 − ∆𝜉)

𝑑
(𝜑(𝜉)𝑒−𝑡𝜆

𝛼|𝜉|𝛼)
ℝ𝑑

𝑒𝑖𝑥𝜉𝑑𝜉. 

 

 Using now Leibnitz formula, yields 

(𝐼𝑑 − ∆𝜉)
𝑑
(𝜑(𝜉)𝑒−𝑡𝜆

𝛼|𝜉|𝛼) = ∑ 𝐶𝛽
𝛼  𝜕𝛼−𝛽

𝛽≤𝛼 
|𝛼≤2𝑑|

𝜑(𝜉)𝜕𝛽𝑒−𝑡𝜆
𝛼|𝜉|𝛼 . 

 Since 𝜑 is a supported in a ring, it does not contain a neighbourhood of zero, then we 

get for 𝜉 ∈ 𝑠𝑢𝑝𝑝 𝜑, there exists a couple (𝑐, 𝐶) of positive real numbers such that for any 𝜉 in 

the support of 𝜑, 

|(𝜕𝛽𝑒−𝑡𝜆
𝛼|𝜉|𝛼| ≤ 𝐶(1 + 𝑡𝜆𝛼)|𝛽|𝑒−𝑡𝜆

𝛼|𝜉|𝛼 ≤  𝐶𝑒−𝑐
−1𝑡𝜆𝛼 . 

 Therefore, 

|(𝐼𝑑 − ∆𝜉)
𝑑
(𝜑(𝜉)𝑒−𝑡𝜆

𝛼|𝜉|𝛼)| ≤  𝐶𝑒−𝑐
−1𝑡𝜆𝛼 ∑ 𝐶𝛽

𝛼|𝜕𝛼−𝛽 𝜑(𝜉)|
𝛽≤𝛼 
|𝛼≤2𝑑|

 

 The term in the right hand side belongs to the space 𝐿1(ℝ𝑑), thus deduce that 

 

(1 + |𝑥|2)𝑑𝐺𝜆(𝑥) ≤  𝐶𝑒
−𝑐−1𝑡𝜆𝛼 . 

This gives in (3.2) that is  

‖𝑒𝑡𝐷
𝛼
𝑢‖

𝐿𝑝
≤  𝐶𝑒−𝑐

−1𝑡𝜆𝛼‖𝑣‖𝐿𝑃. 
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Now the proof of the proposition is complete.  

3.3 Smoothing effects 

 Present here two kinds of estimates about a transport diffusion equation:  𝐿𝑝  

estimates and smoothing effects. The proof of the following 𝐿𝑝 estimates can be found in [7], 

[11], and [21].  

Proposition 3.3.1 

 Let 0 ≤ 𝛼 ≤ 2 and 𝑣 be a smooth divergence free vector field. Let also 𝑓 be a 

smooth function and 𝜃 is a smooth solution of (𝑇𝐷)𝛼. Then for every 𝑝 ∈ [1,∞], we have  

‖𝜃(𝑡)‖𝐿𝑝 ≤ ‖𝜃0‖𝐿𝑝 +∫‖𝑓(𝜏)‖𝐿𝑝𝑑𝜏 .

𝑡

0

 

 Proof: 

 We will prove the proposition for 𝑝 ≥ 2 only. The case 𝑝 ∈ [1,2[, can be obtained by 

duality method. Then multiplying the first equation of (𝑇𝐷𝛼), by |𝜃|𝑝−2𝜃, we get  

∫𝜕𝑡𝜃|𝜃|
𝑝−2𝜃 𝑑𝑥 + ∫|𝐷|𝛼𝜃 |𝜃|𝑝−2𝜃 𝑑𝑥 = ∫𝑓|𝜃|𝑝−2𝜃𝑑𝑥. 

 Integrating this last by parts, lead to 

 

1

𝑝

𝑑

𝑑𝑡
‖𝜃(𝑡)‖𝐿𝑝

𝑝 +∫|𝜃|𝑝−2𝜃|𝐷|𝛼𝜃𝑑𝑥 = ∫𝑓|𝜃|𝑝−2𝜃𝑑𝑥   (3.5) 

 We use the following result which we can found in [15] , [25] and [27]. 

∫|𝐷|𝛼𝜃 |𝜃|𝑝−2𝜃𝑑𝑥 ≥ 0,        (3.6) 

 

  and using Lemma 1.5.4 ( Holder inequality) for the right hand side of  (3.5), we get 

∫𝑓|𝜃|𝑝−2𝜃𝑑𝑥 ≤ ‖𝑓‖𝐿𝑝‖𝜃‖𝐿𝑝
𝑝−1         (3.7) 

  Plugging (3.6) and (3.7) into (3.5), yields to 

 

1

𝑝

𝑑

𝑑𝑡
‖𝜃(𝑡)‖𝐿𝑝

𝑝 ≤
1

𝑝

𝑑

𝑑𝑡
‖𝜃(𝑡)‖𝐿𝑝

𝑝 +∫|𝜃|𝑝−2𝜃|𝐷|𝛼𝜃𝑑𝑥. 

≤ ‖𝑓‖𝐿𝑝‖𝜃‖𝐿𝑝
𝑝−1
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  It follows that 

1

𝑝

𝑑

𝑑𝑡
‖𝜃(𝑡)‖𝐿𝑝

𝑝 ≤ ‖𝑓‖𝐿𝑝‖𝜃‖𝐿𝑝
𝑝−1

 

 

 Thus we have  

‖𝜃‖𝐿𝑝
𝑝−1 𝑑

𝑑𝑡
‖𝜃‖𝐿𝑝 ≤ ‖𝑓‖𝐿𝑝‖𝜃‖𝐿𝑝

𝑝−1
 

 Dividing this last inequality by ‖𝜃‖𝐿𝑝
𝑝−1, we get  

𝑑

𝑑𝑡
‖𝜃‖𝐿 𝑝 ≤ ‖𝑓‖𝐿𝑝                    (3.8)      

 Integrating in time the inequality (3.8), we get  

‖𝜃(𝑡)‖𝐿𝑝−‖𝜃0‖𝐿𝑝 ≤ ∫‖𝑓(𝜏)‖𝐿𝑝𝑑𝜏 .

𝑡

0

 

Therefore, 

‖𝜃(𝑡)‖𝐿𝑝 ≤ ‖𝜃0‖𝐿𝑝 + ∫ ‖𝑓(𝜏)‖𝐿𝑝𝑑𝜏 .
𝑡

0
                                                                             

 

We intend now to prove the following smoothing effects, which is the main result of 

this chapter and it is the main ingredient of our result in the next chapter. 

 Theorem 3.3.2   

 Let  𝑣 be a smooth divergence free vector field of ℝ2  such that 

 𝑣 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ+, 𝐿𝑖𝑝(ℝ

2) and 𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ+; �̇�2,1

𝑠 ), 𝑠 >
3

2
. We consider also a smooth 

solution 𝜃 of  the transport-diffusion equation (𝑇𝐷)𝛼, with 𝜃0 ∈ �̇�2,1
𝑠 .  Then for every 𝑟 ∈

[1,∞], there exists a positive constant 𝑐𝑠 depend only on 𝑠  and such that  

   ‖𝜃‖
�̃�𝑡
𝑟�̇�2,1

𝑠+
1
2𝑟
≤ 𝑐𝑠 𝑒

𝑐𝑉(𝑡) (‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑡1�̇�2,1𝑠 ), 

where, 

𝑉(𝑡) ≔ ∫ ‖∇𝑣(𝜏)‖𝐿∞𝑑𝜏.
𝑡

0

 

And if  𝑣 = ∇⊥|𝐷|−1𝜃, the above estimate is also valid for 𝑠 > −1. 

 Remark 3.3.1 

 Note that the theorem is also true in the case of  𝑠 ∈ ]−1,1[,  and (𝑝, 𝑟) ∈ [1,∞]2 

which is proved in [15]. 
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 Proof of Theorem 3.3.2   

 To prove our result, we use a new approach based on Lagrangian coordinates 

combined with paradifferential calculus. The idea of the proof will be done in the spirit of 

[13], [15], [17] and [22]. First, we prove the smoothing effects for a small interval of time 

depending of vector 𝑣, but it depends not on the initial data. In the second step, we proceed to 

division in time thereby extending the estimate at any time arbitrary chosen positive. 

 3.3.1 Local estimates 

 We divide the proof into two cases: case 1 is 𝑟 = ∞, and case 2: 𝑟 < ∞. 

 Case 1:  𝒓 = ∞. 

 We localise in frequency the evolution equation, and rewriting the equation in 

Lagrangian coordinates. Let 𝑞 ∈ ℕ, then the Fourier localized function ∆̇𝑞𝜃 = ∆𝑞𝜃, 𝑞 ∈ ℕ 

satisfies 

∆𝑞(𝜕𝑡𝜃) + ∆𝑞(𝑣. 𝛻𝜃) + ∆𝑞|𝐷|
1
2𝜃 = ∆𝑞𝑓. 

 

Now using  the notation [ ∆𝑞 , 𝑣. ∇ ]𝜃 = ∆𝑞(𝑣. 𝛻𝜃) − 𝑣. 𝛻∆𝑞𝜃, we get 

∆𝑞(𝑣. 𝛻𝜃) = [ ∆𝑞 , 𝑣. 𝛻 ]𝜃 + 𝑣. 𝛻 ∆𝑞𝜃. 

  gives that  

𝜕𝑡∆𝑞𝜃 +  𝑣. ∇ ∆𝑞𝜃 + [ ∆𝑞 , 𝑣. 𝛻 ]𝜃∆𝑞 + |𝐷|
1

2 ∆𝑞𝜃 = ∆𝑞 𝑓. 

 Therefore  

𝜕𝑡∆𝑞𝜃 +  𝑣. ∇ ∆𝑞𝜃 + |𝐷|
1
2 ∆𝑞𝜃 = ∆𝑞 𝑓 − [ ∆𝑞 , 𝑣. 𝛻 ]𝜃: = 𝐹𝑞 . 

From Proposition 3.3.1, we have 

‖∆𝑞𝜃(𝑡)‖𝐿2 ≤ ‖∆𝑞𝜃0‖𝐿2 +∫ ‖𝐹𝑞(𝜏)‖𝐿2 𝑑𝜏
𝑡

0

 

 Multiplying this last by 2𝑞𝑠 and summing over  𝑞, yields, 

∑ 2𝑞𝑠‖∆𝑞𝜃(𝑡)‖𝐿2 𝑑𝜏𝑞
≤∑ 2𝑞𝑠‖∆𝑞𝜃0‖𝐿2 +𝑞

∫ ∑ 2𝑞𝑠‖𝐹𝑞(𝜏)‖𝐿2 𝑑𝜏.𝑞

𝑡

0

 

 This gives that  

‖𝜃‖�̇�2,1𝑠 ≤ ‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑡1�̇�2,1𝑠 + 𝐶∫ ∑ 2𝑞𝑠‖[ ∆𝑞 , 𝑣. 𝛻 ]𝜃(𝜏)‖𝐿2 𝑑𝜏.𝑞

𝑡

0

 

 Therefore  
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‖𝜃‖�̃�𝑡∞�̇�2,1𝑠 ≤ ‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑡1�̇�2,1𝑠 +∫ ∑ 2𝑞𝑠‖[ ∆𝑞 , 𝑣. 𝛻 ]𝜃(𝜏)‖𝐿2 𝑑𝜏𝑞

𝑡

0

 

 By using Lemma 2.4.1 

‖𝜃‖�̃�𝑡∞�̇�2,1𝑠 ≤ ‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑡1�̇�2,1𝑠 + 𝐶 ∫ ‖∇𝑣(𝜏)‖𝐿∞‖𝜃‖�̃�𝜏∞�̇�2,1𝑠 𝑑𝜏
𝑡

0
 . 

 

 

 Using Gronwall’s Lemma 1.5.6, to obtain  

‖𝜃‖�̃�𝑡∞�̇�2,1𝑠 ≤ 𝐶 (‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑡1�̇�2,1𝑠 ) 𝑒
𝑐 ∫ ‖∇𝑣(𝜏)‖𝐿∞𝑑𝜏

𝑡
0    (3.9). 

 This completes the proof of the result in the case of  𝑟 = ∞ . 

 Case 2: 𝒓 < ∞ ∶ 

 Let us now introduce the flow 𝜓𝑞 of the regularised velocity 𝑣,  

𝜓𝑞(𝑡, 𝑥) = 𝑥 + ∫𝑣 (𝜏, 𝜓𝑞(𝜏, 𝑥))

𝑡

0

𝑑𝜏. 

 We set 

�̅�𝑞(𝑡, 𝑥) = ∆𝑞𝜃(𝑡, 𝜓𝑞(𝑡, 𝑥)) and �̅�𝑞(𝑡, 𝑥) = 𝐹𝑞 (𝑡, 𝜓𝑞(𝑡, 𝑥)). 

 

 Then we have the equation, 

𝜕𝑡�̅�𝑞 + |𝐷|
1

2�̅�𝑞 = �̅�𝑞 + |𝐷|
1

2(𝜃𝑞 𝑜 𝜓𝑞) − (|𝐷|
1

2𝜃𝑞)  𝑜𝜓𝑞 ∶= �̅�𝑞
1  (3.10)   

 Since the flow preserves Lebesgue measure, then we obtain 

‖�̅�𝑞‖𝐿2 ≤ ‖∆𝑞𝑓‖𝐿2 + ‖[∆𝑞, 𝑣. ∇]𝜃‖𝐿2
                                (3.11) 

  Using now Proposition 3.2.1, we find that for 𝑞 ∈ ℤ 

‖|𝐷|
1

2 (𝑓𝑜 𝜓) − (|𝐷|
1

2𝑓)  𝑜 𝜓‖
𝐿2
≤ 𝐶𝑒𝐶𝑉(𝑡)𝑉(𝑡)2

𝑞

2‖𝑓‖𝐿2             (3.12)  

with 

𝑉(𝑡) ≔ ‖∇𝑣‖𝐿𝑡1𝐿∞ , 

 Putting (3.11) and (3.12) into (3.10), we obtain 

‖�̅�𝑞
1‖
𝐿2
≤ ‖∆𝑞𝑓‖𝐿2 + ‖[∆𝑞, 𝑣. ∇]𝜃‖𝐿2

+  𝐶𝑒𝐶𝑉(𝑡)𝑉(𝑡)2
𝑞
2‖∆𝑞𝜃‖𝐿2 

Now using the notation 𝑉(𝑡) ≤ 𝑒𝐶𝑉(𝑡), in Chapter I, we obtain 

                      ‖�̅�𝑞
1‖
𝐿2
≤ ‖∆𝑞𝑓‖𝐿2 + ‖[∆𝑞, 𝑣. ∇]𝜃‖𝐿2

+ 𝐶𝑒𝐶𝑉(𝑡)2
𝑞

2‖∆𝑞𝜃‖𝐿2     
(3.13) 

  again will localize in frequency the equation (3.10) through the operator  ∆𝑗 , 𝑗 ∈ ℤ  
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𝜕𝑡∆𝑗  �̅�𝑞 + |𝐷|
1
2
 ∆𝑗 �̅�𝑞 = ∆𝑗�̅�𝑞

1,      (3.14) 

 where 

∆𝑗�̅�𝑞
1 ≔ ∆𝑗�̅�𝑞 + ∆𝑗  (|𝐷|

1
2(𝜃𝑞 𝑜 𝜓𝑞) − (|𝐷|

1
2𝜃𝑞)  𝑜𝜓𝑞). 

Then from equation(3.14), we have 

∆𝑗  �̅�𝑞(𝑡, 𝑥) = 𝑒
−𝑡|𝐷|

1
2
 

∆𝑗 𝜃𝑞
0 +∫𝑒−(𝑡−𝜏)|𝐷|

1
2
 

∆𝑗�̅�𝑞(𝜏)𝑑𝜏

𝑡

0

 

                                           +∫ 𝑒−(𝑡−𝜏)|𝐷|
1
2
 

∆𝑗 (|𝐷|
1
2(𝜃𝑞 𝑜 𝜓𝑞) − (|𝐷|

1
2
 𝜃𝑞)  𝑜𝜓𝑞) .

𝑡

0

 

  Proposition 3.3.1 yields to 

‖∆𝑗�̅�𝑞(𝑡)‖𝐿2 ≤ ‖𝑒
−𝑡|𝐷|

1
2
 

∆𝑗𝜃𝑞
0‖
𝐿2
+ ∫ ‖𝑒−(𝑡−𝜏)|𝐷|

1
2
 

∆𝑗�̅�𝑞(𝜏)‖
𝐿2
𝑑𝜏

𝑡

0
                            

                                         +∫‖𝑒−(𝑡−𝜏)|𝐷|
1
2
 

∆𝑗 (|𝐷|
1
2(𝜃𝑞 𝑜 𝜓𝑞) − (|𝐷|

1
2
 𝜃𝑞)  𝑜𝜓𝑞)‖

𝐿2
𝑑𝜏.

𝑡

0

 

Using Proposition 3.2.2, and (3.14), we find 

 

‖∆𝑗�̅�𝑞(𝑡)‖𝐿2 ≤ 𝐶𝑒
−𝑐𝑡2

𝑗
2‖∆𝑗𝜃𝑞

0‖
𝐿2
+ 𝐶∫ 𝑒−𝑐(𝑡−𝜏)2

𝑗
2  ‖∆𝑞𝑓(𝜏)‖𝐿2𝑑𝜏

𝑡

0

 

+𝐶 𝑒𝐶𝑉(𝑡)2
𝑞
2∫ 𝑒−𝑐(𝑡−𝜏)2

𝑗
2‖∆𝑞𝜃(𝜏)‖𝐿2𝑑𝜏

𝑡

0

 

+ 𝐶 ∫ 𝑒−𝑐(𝑡−𝜏)2
𝑗
2‖[∆𝑞, 𝑣. 𝛻]𝜃(𝜏)‖𝐿2𝑑𝜏.

𝑡

0

 

 Integrating this last estimate with respect to time 𝑡 and using Lemme 1.5.2 (Young 

inequality), we have for every 𝑟 ∈ [1,∞], 

‖∆𝑗�̅�𝑞‖𝐿𝑡𝑟𝐿2
≤  𝐶2−𝑗 2𝑟⁄ ((1 − 𝑒−𝑐𝑟𝑡2

𝑗
2)

1

𝑟

‖∆𝑗𝜃𝑞
0‖
𝐿2
+  ‖∆𝑞𝑓‖𝐿𝑡1𝐿2

) +𝐶𝑒𝐶𝑉(𝑡) 2
𝑞−𝑗

2  ‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2
  

                                                +2−𝑗 2𝑟⁄ ∫ ‖[∆𝑞 , 𝑣. 𝛻]𝜃(𝜏)‖𝐿2
𝑑𝜏 

𝑡

0
       (3.15)  

Let 𝑁 ∈ ℕ be a fixed number that will be chosen later, and since the flow 𝜓  preserves 

Lebesgue measure then we write 

2𝑞(𝑠+1 2𝑟⁄ )‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2
= 2𝑞(𝑠+1 2𝑟⁄ )‖�̅�𝑞‖𝐿𝑡𝑟𝐿2

 

                                ≤ 2𝑞(𝑠+1 2𝑟⁄ ) (∑ ‖∆𝑗�̅�𝑞‖𝐿𝑡𝑟𝐿2|𝑗−𝑞|≥𝑁
+ ∑ ‖∆𝑗�̅�𝑞‖𝐿𝑡𝑟𝐿2|𝑗−𝑞|<𝑁

) 
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≔ 𝐼1 + 𝐼2                                        (3.16) 

If 𝑗 − 𝑞 ≥ 𝑁, it follows by using Lemma 2.2.3 that,  

‖∆𝑗�̅�𝑞‖𝐿𝑡𝑟𝐿2
≤ C 2−|𝑗−𝑞|𝑒∫ ‖𝛻𝑣(𝜏)‖𝐿∞𝑑𝜏

𝑡
0 ‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2

 

                                                        ≤ 𝐶 2−|𝑗−𝑞|𝑒𝑉(𝑡) ‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2
. 

  Therefore, get 

𝐼1 ≤ 𝐶 2
−𝑁𝑒𝑉(𝑡)2𝑞(𝑠+1 2𝑟⁄ )‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2

            (3.17) 

 For the term 𝐼2, have 

𝐼2 = 2
𝑞(𝑠+1 2𝑟⁄ )∑ ‖∆𝑗�̅�𝑞‖𝐿𝑡𝑟𝐿2

,
|𝑗−𝑞|<𝑁

 

use (3.15), yields 

𝐼2 ≤ C(1 − 𝑒
−𝑐𝑟𝑡2

𝑞
2)

1
𝑟
2𝑞𝑠‖∆𝑞𝜃0‖𝐿2 + 𝐶2

𝑁
2𝑟2𝑞𝑠  ‖∆𝑞𝑓‖𝐿𝑡1𝐿2

 

+ 𝐶2
𝑁

2𝑒𝐶𝑉(𝑡)2𝑞(𝑠+1 2𝑟)⁄  ‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2
  

                           +𝐶2𝑁 2𝑟⁄ 2𝑞𝑠 ∫ ‖[∆𝑞, 𝑣. 𝛻]𝜃(𝜏)‖𝐿2𝑑𝜏 
𝑡

0
        (3.18)  

Plugging now (3.17), (3.18), into (3.16), obtain that  

2𝑞(𝑠+1 2𝑟⁄ )‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2
≤ 𝐶 2−𝑁𝑒𝑉(𝑡)2𝑞(𝑠+1 2𝑟⁄ )‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2

 

                           +C(1 − 𝑒−𝑐𝑟𝑡2
𝑞
2)

1

𝑟

2𝑞𝑠‖∆𝑞𝜃0‖𝐿2  

                                                                  +𝐶2
𝑁
2𝑟2𝑞𝑠  ‖∆𝑞𝑓‖𝐿𝑡1𝐿2

+ 𝐶 2
𝑁
2𝑒𝐶𝑉(𝑡)2𝑞(𝑠+1 2𝑟⁄ )‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2

 

                                 +𝐶 2𝑁 2𝑟⁄ 2𝑞𝑠∫ ‖[∆𝑞, 𝑣. 𝛻]𝜃(𝜏)‖𝐿2𝑑𝜏.
𝑡

0

 

 We set now 

𝐻𝑞
𝑟(𝑡) ≔ 2𝑞(𝑠+1 2𝑟⁄ )‖∆𝑞𝜃‖𝐿𝑡𝑟𝐿2

. 

Therefore 

𝐻𝑞
𝑟(𝑡) ≤ 𝐶 [2−𝑁𝑒𝐶𝑉(𝑡) + 2

𝑁
2𝑒𝐶𝑉(𝑡)]𝐻𝑞

𝑟(𝑡) 

                                             +C (1 − 𝑒−𝑐𝑟𝑡2
𝑞
2)

1

𝑟

2𝑞𝑠‖∆𝑞𝜃
0‖
𝐿2
+ 𝐶2

𝑁

2𝑟2𝑞𝑠  ‖∆𝑞𝑓‖𝐿𝑡1𝐿2
 

                     + 𝐶 2𝑁 2𝑟⁄ 2𝑞𝑠∫ ‖[∆𝑞, 𝑣. 𝛻]𝜃(𝜏)‖𝐿2𝑑𝜏.
𝑡

0
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 Now, claim that, there exists two constants 𝑁 ∈ ℕ and 𝐶0 such that if  𝑉(𝑡) ≤ 𝐶0, 

then  

2−𝑁𝑒𝐶𝑉(𝑡) + 2
𝑁
2  𝑒𝐶𝑉(𝑡)  ≤

1

2𝐶
. 

 To show this, we take first 𝑡 such that 𝑉(𝑡) ≤ 1, which is possible since 

lim
𝑡→0+

𝑉(𝑡) = 0. Second, we choose 𝑁 in order to get 2−N𝑒𝐶 ≤
1

4𝐶
. By taking again 𝑉(𝑡) 

sufficiently small, we obtain that  

2
𝑁
2  𝑒𝐶 ≤

1

4𝐶
. 

Therefore, there exists two constants 𝑁 ∈ ℕ and 𝐶0 such that if  𝑉(𝑡) ≤ 𝐶0, then  

 

2−𝑁𝑒𝐶𝑉(𝑡) + 2
𝑁
2  𝑒𝐶𝑉(𝑡)  ≤

1

2𝐶
                (3.19) 

 

 Under this assumption 𝑉(𝑡) ≤ 𝐶0, we obtain for 𝑞 ≥ −1, 

 

𝐻𝑞
𝑟(𝑡) ≤  C (1 − 𝑒−𝑐𝑟𝑡2

𝑞
2)

1

𝑟

2𝑞𝑠‖∆𝑞𝜃0‖𝐿2 + 𝐶2
𝑞𝑠  ‖∆𝑞𝑓‖𝐿𝑡1𝐿2

  

 

       +𝐶2𝑞𝑠 ∫ ‖[∆𝑞, 𝑣. 𝛻]𝜃(𝜏)‖𝐿2𝑑𝜏                     
(3.20)  

𝑡

0
 

  

summing over 𝑞, and using Lemma 2.4.1, we find for  𝑉(𝑡) ≤ 𝐶0, 

 

‖𝜃‖
�̃�𝑡
𝑟�̇�2,1

𝑠+
1
2𝑟
≤ 𝐶‖𝜃0‖�̇�2,1𝑠 + 𝐶‖𝑓‖𝐿𝑡1�̇�2,1𝑠 + 𝐶∫ ‖∇𝑣(𝜏)‖𝐿∞‖𝜃(𝜏)‖�̇�2,1𝑠

𝑡

0

𝑑𝜏. 

 

 Using Lemma 1.5.4 (Holder inequality), yields 

 

‖𝜃‖
�̃�𝑡
𝑟�̇�2,1

𝑠+
1
2𝑟
≤ 𝐶 (‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑡1�̇�2,1𝑠 ) + 𝐶𝑉(𝑡)‖𝜃‖�̃�𝑡∞�̇�2,1𝑠        (3.21) 

Plugging (3.9) into (3.21), we find 

‖𝜃‖
�̃�𝑡
𝑟�̇�2,1

𝑠+
1
2𝑟
≤ 𝐶 (‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑡1�̇�2,1𝑠 ) 𝑒

𝑐 ∫ ‖∇𝑣(𝜏)‖𝐿∞𝑑𝜏
𝑡
0     (3.22) 
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Therefore, the result is proved for small time. 

3.3.2 Globalization 

Let us now see how to extend this for an arbitrary positive time 𝑇. take a partition ( 

𝑇𝑖)𝑖=0
𝑁  of the interval  ,[0, 𝑇], such that   

∫ ‖∇𝑣(𝜏)‖𝐿∞ 𝑑𝜏 ≈ 𝐶0, ∀ 𝑖 ∈ [0, 𝑁].
𝑇𝑖+1
𝑇𝑖

  

 Reproducing the same argument of  (3.22), we obtain  

‖𝜃‖
�̃�[𝑇𝑖,𝑇𝑖+1]
𝑟 �̇�2,1

𝑠+
1
2𝑟
≤ 𝐶 (‖𝜃(𝑇𝑖)‖�̇�2,1𝑠 + 𝐶∫ ‖𝑓(𝜏)‖�̇�2,1𝑠

𝑇𝑖+1

𝑇𝑖

𝑑𝜏 ) exp (∫ ‖∇𝑣(𝜏)‖𝐿∞𝑑𝜏
𝑇𝑖+1

𝑇𝑖

) 

Summing these estimates on 𝑖 = 1, to 𝑖 = 𝑁 − 1, and using triangle inequality, gives 

‖𝜃‖
�̃�𝑇
𝑟 �̇�2,1

𝑠+
1
2𝑟
≤ 𝐶 (∑‖𝜃(𝑇𝑖)‖�̇�2,1𝑠

𝑁−1

𝑖=0

+ 𝐶∫ ‖𝑓(𝑇)‖�̇�2,1𝑠
𝑇

0

𝑑𝑇 ) exp(𝑐 ∫ ‖∇𝑣(𝜏)‖𝐿∞𝑑𝜏
𝑇

0

) 

From (3.22), we have  

‖𝜃‖
�̃�𝑇
𝑟 �̇�2,1

𝑠+
1
2𝑟
≤ 𝐶𝑁 (‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑇1 �̇�2,1𝑠 ) 𝑒

𝐶𝑉(𝑇). 

It suffices to choose 𝑁 such that  𝐶𝑁 ≈ 𝑉(𝑡), then 

‖𝜃‖
�̃�𝑇
𝑟 �̇�2,1

𝑠+
1
2𝑟
≤ 𝐶 𝑉(𝑡) (‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑇1 �̇�2,1𝑠 ) 𝑒

𝐶𝑉(𝑇). 

Therefore, get 

‖𝜃‖
�̃�𝑇
𝑟 �̇�2,1

𝑠+
1
2𝑟
≤ 𝐶𝑒𝐶𝑉(𝑇) (‖𝜃0‖�̇�2,1𝑠 + ‖𝑓‖𝐿𝑇1 �̇�2,1𝑠 ). 

This is the desired result, and the proof of the theorem is now achieved. 
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Chapter IV:  

Global existence and uniqueness for solution of 2D guasi 

geostrophic equation 

4.1 Introduction 

The theory of global and uniqueness result for the quasi geostrophic equation, with 

small initial data, is proved by many numerous authors, and in a different functional spaces,  

refer to [12],[19] and [28] 

4.2 Main result 

In this chapter, we will study the system  (𝑄𝐺)𝛼 with =
1

2
 , that we study the system  

  {
𝜕𝑡𝜃 + 𝑣 ∙ 𝛻𝜃 + |𝐷|

1
2
 𝜃 = 0

𝑑𝑖𝑣 𝑣 = 0
𝜃|𝑡=0 = 𝜃0.

          (𝑄𝐺)1
2
 

We will prove the existence and uniqueness solution for (𝑄𝐺)1
2

 in the Besov space 

𝐵2,1
𝑠  , 𝑠 >

3

2
,  and finally, we combine it with the results of [14] and [15]. Our result reads as 

follows.     

Theorem 4.2.1 

Let 𝜃0 ∈ 𝐵2,1
𝑠 , 𝑠 >

3

2
, then there exists 𝑇 > 0 such that the (𝑄𝐺)1

2

 equation has a 

unique solution 𝜃 such that 

𝜃 ∈ 𝐶([0, 𝑇]; 𝐵2,1
𝑠 ) ∩ 𝐿𝑇

1 �̇�2,1
𝑠+

1

2 . 

In other words, there exists 𝛽 > 0, such that ‖𝜃0‖�̇�∞,11 ≤ 𝛽, then than we 𝑇 = ∞. 

Proof 

The proof of this theorem can be given in four steps  

 Step 1: A priori estimates 

 Step 2: Global existence 

 Steps 3: Local estimates 

 Step 4: Uniqueness. 
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For conciseness, we shall provide the a priori estimates supporting the claim of the 

theorem, and give a complete proofs of the uniqueness and local existence parts, while the 

proof of the existence part will be shortened, and briefly described.  

4.2.1 A priori estimates 

The important quantities to bound for all time are the 𝐿∞ norm of the vorticity and the 

Lipschitz norm of the velocity. The main step for obtain a Lipschitz bound is given an 𝐿∞ 

bound of the vorticity. We will prove three kinds of a priori estimates: the first one deals with 

some easy estimates that one can obtained by energy estimates. The second one is concerned 

with a global a priori estimate of the Lipschitz norm of the velocity, and the 𝐿∞ norm of the 

vorticity. The last a priori estimates concerned with some strong estimates. We start then with 

the following which is a direct consequence of Proposition 3.3.1.   

Proposition 4.2.1 

Let 𝜃 be a smooth solution of (𝑄𝐺)1
2

, and 𝜃0 ∈ 𝐿
2. Then we have 

‖𝜃‖𝐿2 ≲ ‖𝜃0‖𝐿2   . 

Now we prove the following  

Proposition 4.2.2 

Let 𝜃0 ∈ �̇�∞,1
1 , and let ω be the vorticity of the velocity, with ω ≔ ∇𝑣. Then then 

there exists two constants 𝐶, 𝛽 > 0, such that if  ‖𝜃0‖�̇�∞,11 ≤ 𝛽, then we have  ∀𝑡 ∈ ℝ+     

‖∇𝑣‖𝐿𝑡1𝐿∞ + ‖ω(𝑡)‖𝐿
∞ ≤ 𝐶0𝑒

𝐶0𝑡, 

with 𝐶0 depends only on the norm of the initial data. 

Proof 

First, we use Holder and Bernstein inequalities, the embeddings �̇�∞,1
0 ↪ 𝐿∞, 

combined with the fact that Riesz transform maps continuously homogenous Besov space 

into itself,  get 

𝑉(𝑡): = ∫‖∇𝑣(𝜏)‖𝐿∞𝑑𝜏

𝑡

0

 

         ≤ 𝑡 ‖∇𝑣‖𝐿𝑡∞�̇�∞,10  

                                                                   ≤ 𝑡‖𝑣‖𝐿𝑡∞�̇�∞,10  
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                                    ≤ 𝑡 ‖𝜃‖𝐿𝑡∞�̇�∞,11                  (4.2.1) 

Now using  Lemma 2.3.1 

‖𝜃‖𝐿𝑡∞�̇�∞,11 ≤ 𝐶‖𝜃‖�̃�𝑡∞�̇�∞,11                     (4.2.2) 

 Plugging now (4.2.2) into (4.2.1), we obtain that 

𝑉(𝑡) ≔ ‖∇𝑣‖𝐿𝑡1𝐿∞ ≤ 𝐶 𝑡 ‖𝜃‖�̃�𝑡∞�̇�∞,11        (4.2.3) 

can now estimate ‖ω(𝑡)‖𝐿∞ , for this use the fact that  

‖ω(𝑡)‖𝐿∞ ≲ ‖∇𝑣(𝑡)‖𝐿∞ , 

and the embeddings �̇�∞,1
0 ↪ 𝐿∞, combined with the fact that Riesz transform maps 

continuously homogenous Besov space into itself, we get in view of (4.2.2), 

‖ω(𝑡)‖𝐿∞ ≲ ‖∇𝑣(𝑡)‖𝐿∞ 

                       ≲ ‖∇𝑣(𝑡)‖�̇�∞,10  

                      ≲ ‖𝜃(𝑡)‖�̇�∞,11  

                    ≲ ‖𝜃‖𝐿𝑡∞�̇�∞,11  

                                                 ≲ ‖𝜃‖�̃�𝑡∞�̇�∞,11                 (4.2.4) 

  From (4.2.3) and (4.2.4), we get  

‖∇𝑣‖𝐿𝑡1𝐿∞ + ‖ω(𝑡)‖𝐿
∞ ≤ 𝐶 (𝑡 + 1) ‖𝜃‖�̃�𝑡∞�̇�∞,11 . 

 Now using Theorem 3.3.2, for 𝑝 = ∞, we obtain 

                                                   ‖∇𝑣‖𝐿𝑡1𝐿∞ + ‖ω(𝑡)‖𝐿
∞ ≤ ‖𝜃0‖�̇�∞,11 𝑒𝐶𝑉(𝑡). 

 

Since 𝜃0 ∈ �̇�∞,1
1 , then there exists a constant 𝛽 > 0, such that 

‖𝜃0‖�̇�∞,11 ≤ 𝛽,                    (4.2.5) 

And since the function 𝑉 depends continuously in time and 𝑉(0) = 0, then we can 

deduce for small initial data that 𝑉 does not blow up, and then there exists a constant 𝐶 > 0, 

such that 
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𝑉(𝑡) ≤ 𝐶‖θ0‖�̇�∞,11 ,    ∀𝑡 ∈ ℝ+      (4.2.6) 

Therefore, we get 

‖∇𝑣‖𝐿𝑡1𝐿∞ + ‖ω(𝑡)‖𝐿
∞ ≤ 𝐶‖𝜃0‖�̇�∞,11  (𝑡 + 1) 𝑒

𝐶 ‖𝜃0‖�̇�∞,1
1
. 

This gives that  

‖∇𝑣‖𝐿𝑡1𝐿∞ + ‖ω(𝑡)‖𝐿
∞ ≤ 𝐶0𝑒

𝐶0𝑡. 

The task is now to find a global estimates for stronger norms of the solution of  

(𝑄𝐺)1
2

. 

Proposition 4.2.3 

Let 𝜃0 ∈ �̇�2,1
𝑠 ,  with 𝑠 >

3

2
, and 𝜃 be a smooth solution of (𝑄𝐺)1

2

. Then we have 

‖𝜃‖�̃�𝑡∞�̇�2,1𝑠 + ‖𝜃‖
�̃�𝑡
1�̇�2,1

𝑠+
1
2
+ ‖𝑣‖�̃�𝑡∞�̇�2,1𝑠 ≲ ‖𝜃0‖�̇�2,1𝑠     

Proof  

First, we apply Theorem 3.3.2, we get 

‖𝜃‖�̃�𝑡∞�̇�2,1𝑠 + ‖𝜃‖
�̃�𝑡
1�̇�2,1

𝑠+
1
2
≲ ‖𝜃0‖�̇�2,1𝑠    𝑒

𝐶𝑉(𝑡)              (4.2.7) 

Now, to estimate ‖𝑣‖�̃�𝑡∞𝐵2,1𝑠 , we can writ 𝑣 as  

𝑣 = ∆−1𝑣 +∑∆𝑞𝑣.

𝑞≥0

 

Then  

‖𝑣‖�̃�𝑡∞𝐵2,1𝑠 ≲ ‖∆−1𝑣‖𝐿𝑡∞𝐿2 + ‖𝑣‖�̃�𝑡∞�̇�2,1𝑠  

Using again Theorem 3.3.2, yields   

‖𝑣‖�̃�𝑡∞�̇�2,1𝑠 ≲ ‖𝑣‖𝐿𝑡∞𝐿2 + ‖𝜃‖�̃�𝑡∞�̇�2,1𝑠        

                             ≲ ‖𝑣‖𝐿𝑡∞𝐿2 + ‖𝜃0‖�̇�2,1𝑠          (4.2.8) 

Now, since 𝑣 = (−𝑅2𝜃, 𝑅1𝜃) = (
−𝜕2

|𝐷|
𝜃,

𝜕1

|𝐷|
𝜃),  then by the continuity of Riesz transform, we 

get  

‖𝑣‖𝐿𝑡∞𝐿2 ≲ ‖𝜃0‖ 𝐿2            (4.2.9) 
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Putting (4.2.9) into (4.2.8), we get  

‖𝑣‖�̃�𝑡∞�̇�2,1𝑠 ≲ ‖𝜃0‖ 𝐿2  + ‖𝜃0‖�̇�2,1𝑠            (4.2.10) 

Combining (4.2.7) , (4.2.10),and using proposition 4.2.2 we get  

‖𝜃‖�̃�𝑡∞�̇�2,1𝑠 + ‖𝜃‖
�̃�𝑡
1�̇�2,1

𝑠+
1
2
+ ‖𝑣‖�̃�𝑡∞�̇�2,1𝑠       ≲ ‖𝜃0‖�̇�2,1𝑠 . 

This is the desired result. 

4.2.2 Global Existence 

Let us now outline briefly the proof of the existence of global solution to (𝑄𝐺)1
2

. We 

construct a global solution. First, we smooth out initial data 

𝜃0
𝑛 = 𝑆𝑛𝜃0. 

By definition of the operator 𝑆𝑛, there is a radial function 𝜒 ∈ 𝐷(ℝ2), such that 

𝜃0
𝑛 = 𝑆𝑛𝜃

0 = 22𝑛𝜒(2𝑛. ) ∗ 𝜃0. 

Then, we have 

‖𝜃0
𝑛‖𝐿2 ≤ ‖2

2𝑛𝜒(2𝑛. ) ∗ 𝜃0‖𝐿2 

               ≤ ‖22𝑛𝜒(2𝑛. )‖𝐿1 ‖𝜃0‖𝐿2 

≤ ‖𝜒‖𝐿1 ‖𝜃0‖𝐿2 

≤ 𝐶 ‖𝜃0‖𝐿2 , 

 and in the Besov space, we have 

‖𝜃0
𝑛‖�̇�2,1𝑠 ≤ ∑ ‖∆̇𝑞𝜃0‖�̇�2,1𝑠

𝑞≤𝑛−1

 

                                           ≤ ∑ 2𝑝𝑠 ∑ ‖∆̇𝑝∆̇𝑞𝜃0‖𝐿2
𝑞≤𝑛−1|𝑞−𝑝|≤1

 

                       ≤∑2𝑝𝑠 ‖∆̇𝑝𝜃0‖𝐿2
𝑝

 

          ≤ 𝐶 ‖𝜃0‖�̇�2,1𝑠 . 
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The fact that, 𝑑𝑖𝑣 𝑣0
𝑛 = 0, due to the incompressibility of the vector field 𝑣0. Let us 

now consider the system, 

{
 
 

 
 𝜕𝑡𝜃𝑛 + 𝑣𝑛. ∇𝜃𝑛 + |𝐷|

1

2𝜃𝑛 = 0,

𝑣𝑛 = (−𝑅2𝜃𝑛, 𝑅1𝜃𝑛),

𝜃0
𝑛(0, 𝑥) = 𝑆𝑛𝜃0(𝑥),
(𝜃0, 𝑣0) = (0,0)

               (4.2.11)                

The global existence of the solutions is governed by 𝑉𝑛, where 

𝑉𝑛(𝑡): = ∫‖∇𝑣𝑛(𝜏)‖𝐿∞𝑑𝜏.

𝑡

0

 

Since the initial data are smooths, then can construct locally in time a unique solution 

(𝜃𝑛, 𝑣𝑛). This solution is globally defined since the Lipshitz norm of the velocity, does not 

blow up in finite time by Proposition 4.2.3. Once again from the a priori estimates, have 

‖𝜃𝑛‖�̃�𝑡∞�̇�2,1𝑠 + ‖𝜃𝑛‖
�̃�𝑡
1�̇�2,1

𝑠+
1
2
+ ‖𝑣𝑛‖�̃�𝑡∞�̇�2,1𝑠 ≲ ‖𝜃0‖�̇�2,1𝑠         (4.2.12) 

The control is uniform with respect to the parameter 𝑛. Thus if follows that up to an 

extraction that (𝑣𝑛, 𝜃𝑛) is weakly convergent to (𝑣, 𝜃) belonging to  

𝐿𝑇
∞�̇�2,1

𝑠 × 𝐿𝑇
∞�̇�2,1

𝑠 ∩ �̃�𝑇
1 �̇�2,1

𝑠+
1
2. 

Now, will prove that the (𝑣𝑛, 𝜃𝑛) is a Cauchy in 𝐿𝑇
∞𝐿2 × 𝐿𝑇

1 𝐿2.  

Let (𝑛, 𝑛1) ∈ ℕ
2, 𝑣𝑛,𝑛1 = 𝑣𝑛 − 𝑣𝑛1   and      𝜃𝑛,𝑛1 = 𝜃𝑛 − 𝜃𝑛1 , then aaccording to the estimate 

(4.2.12),  get  

‖𝑣𝑛,𝑛1‖𝐿𝑇∞𝐿2
+ ‖𝜃𝑛,𝑛1‖𝐿𝑇1𝐿2

≲ ‖𝑣𝑛,0 − 𝑣𝑛1,0‖𝐿2  + ‖𝜃𝑛,0 − 𝜃𝑛1,0‖𝐿2      . 

This show that (𝑣𝑛, 𝜃𝑛) is of a Cauchy in the space 𝐿𝑇
∞𝐿2 × 𝐿𝑇

1 𝐿2. Hence, it converges 

strongly to (𝑣, 𝜃). This allows us to pass to the limit in the system (4.2.11) and then we get 

that (𝑣, 𝜃) is a solution of (𝑄𝐺)1
2

. 

The continuity in time of 𝜽: 

Let us now sketch the proof of the continuity in time of 𝜃, that is 𝜃 ∈ 𝐶(ℝ+, 𝐵2,1
𝑠 ). 

From the definition of Besov space, have for 𝑁 ∈ ℕ, 𝑇 > 0 and for 𝑡, 𝑡1 ∈ ℝ+, 

‖𝜃(𝑡) − 𝜃(𝑡1)‖𝐵2,1𝑠 ≤ ∑ 2𝑞𝑠‖∆𝑞𝜃(𝑡) − ∆𝑞𝜃(𝑡1)‖𝐿2
𝑞<𝑁
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                                   +∑ 2𝑞𝑠‖∆𝑞𝜃(𝑡) − ∆𝑞𝜃(𝑡1)‖𝐿2
𝑞≥𝑁

 

                                     ≲ ∑ 2𝑞𝑠‖∆𝑞𝜃(𝑡) − ∆𝑞𝜃(𝑡1)‖𝐿2
𝑞<𝑁

 

                                                  +∑ 2𝑞𝑠 (‖∆𝑞𝜃(𝑡)‖𝐿2 + ‖∆𝑞𝜃(𝑡1)‖𝐿2)

𝑞≥𝑁

. 

Therefore, have 

‖𝜃(𝑡) − 𝜃(𝑡1)‖𝐵2,1𝑠 ≲ ∑ 2𝑞𝑠‖∆𝑞𝜃(𝑡) − ∆𝑞𝜃(𝑡1)‖𝐿2 + 𝐶

𝑞<𝑁

∑2𝑞𝑠‖∆𝑞𝜃‖𝐿𝑡∞𝐿2
𝑞≥𝑁

 

                                               ≔ 𝐼1 + 𝐼2            (4.2.13) 

For any 휀 > 0, then there exists a number N such that 

𝐼2 ≔∑2𝑞𝑠‖∆𝑞𝜃‖𝐿𝑡∞𝐿2
𝑞≥𝑁

≤ 휀. 

For 𝐼1, we use  Taylor’s formula, we have 

∆𝑞𝜃(𝑡) − ∆𝑞𝜃(𝑡1) = (𝑡 − 𝑡1)∫𝜕𝑡∆𝑞𝜃(𝑠)𝑑𝑠.

1

0

 

Taking the 𝐿2 norm of the above equation, multiplying both sides by 2𝑞𝑠, and summing over 

𝑞 < 𝑁, we get 

∑2𝑞𝑠‖∆𝑞𝜃(𝑡) − ∆𝑞𝜃(𝑡1)‖𝐿2 ≤
|𝑡 − 𝑡1|

𝑞<𝑁

∑2𝑞𝑠‖𝜕𝑡∆𝑞𝜃‖𝐿𝑡∞𝐿2
𝑞<𝑁

 

                                                                         ≲ |𝑡 − 𝑡1| ∑ 2𝑞𝑠

𝑞<𝑁

2−𝑞2𝑞‖𝜕𝑡∆𝑞𝜃‖𝐿𝑡∞𝐿2
. 

 Therefore, 

∑2𝑞𝑠‖∆𝑞𝜃(𝑡) − ∆𝑞𝜃(𝑡1)‖𝐿2
𝑞<𝑁

 ≲ |𝑡 − 𝑡1|2
𝑁‖𝜕𝑡𝜃‖𝐿𝑡∞𝐵2,1𝑠−1        (4.2.14) 

 It remains now to estimate ‖𝜕𝑡𝜃‖𝐿𝑡∞𝐵2,1𝑠−1. For this, use the equation of 𝜃: 

𝜕𝑡𝜃 = −𝑣. ∇𝜃 − |𝐷|
1
2𝜃                (4.2.15) 
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 And will prove that 𝜕𝑡𝜃 in the space 𝐿𝑡
∞𝐵2,1

𝑠−1. To do this,  have from Remark 2.3.1 that, 

|𝐷|
1
2𝜃 ∈ 𝐵2,1

𝑠−
1
2 ↪ 𝐵2,1

𝑠−1                 (4.2.16) 

 From free divergence of the velocity and Bernstein inequality we get, 

‖𝑣. 𝛻𝜃‖𝐵2,1𝑠−1: = ∑2𝑞(𝑠−1)‖∆𝑞(𝑣. 𝛻𝜃)‖𝐿2
𝑞

 

                ≲ ∑2𝑞𝑠‖∆𝑞(𝑣 𝜃)‖𝐿2
𝑞

 

≲ ‖𝑣 𝜃‖𝐵2,1𝑠 . 

Therefore, we obtain  

‖𝑣. 𝛻𝜃‖𝐵2,1𝑠−1 ≲ ‖𝑣 𝜃‖𝐵2,1
𝑠              (4.2.17) 

Since the space 𝐵2,1
𝑠  is an algebra with 𝑠 > 1, then 

‖𝑣 𝜃‖𝐵2,1𝑠 ≲ ‖𝑣‖𝐵2,1𝑠 ‖𝜃‖𝐵2,1𝑠                   (4.2.18) 

Putting (4.2.18) into (4.2.17), we obtain 

‖𝑣. 𝛻𝜃‖𝐵2,1𝑠−1 ≲ ‖𝑣‖𝐵2,1
𝑠 ‖𝜃‖𝐵2,1𝑠             (4.2.19)  

Combining (4.2.16), and (4.2.19), get 𝜕𝑡𝜃 ∈ 𝐿𝑡
∞𝐵2,1

𝑠−1. This gives in (4.2.14), that 

∑2𝑞𝑠‖∆𝑞𝜃(𝑡) − ∆𝑞𝜃(𝑡1)‖𝐿2 ≤ 𝐶
|𝑡 − 𝑡1|

𝑞<𝑁

2𝑁‖𝑣‖𝐵2,1𝑠 ‖𝜃‖𝐵2,1𝑠  

Therefore, get in view of (4.2.13), and for any 휀 > 0,  

‖𝜃(𝑡) − 𝜃(𝑡1)‖𝐵2,1𝑠 ≲ 𝐶|𝑡 − 𝑡1|‖𝑣‖𝐵2,1𝑠 ‖𝜃‖𝐵2,1𝑠 + 휀 

Using Proposition 4.2.3, with 𝑞 ≥ 0,  get  

‖𝑣‖𝐵2,1𝑠 ‖𝜃‖𝐵2,1𝑠 ≤ ‖𝜃0‖𝐵2,1𝑠 . 

This gives that, 

‖𝜃(𝑡) − 𝜃(𝑡1)‖𝐵2,1𝑠 ≤ 𝐶0. 

This proves the continuity of 𝜃. 
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4.2.3 Local existence 

The local time existence depends on the control of 𝑉(𝑡) ≔ ‖∇𝑣‖𝐿𝑡1𝐿∞ . We distinguish two 

cases: 𝑠 >
3

2
 and 𝑠 =

3

2
. 

Case 1: 𝒔 >
𝟑

𝟐
 

There exists 𝑎 > 1, such that 𝑠 > 2 −
1

2𝑎
. From the inequality, 

𝑉(𝑡) ≤ ∫‖𝜃(𝜏)‖�̇�∞,11 𝑑𝜏

𝑡

0

 

And by using Lemma 1.5.4 of Holder inequality, we get for 
1

𝑎
+
1

𝑏
= 1, 

𝑉(𝑡) ≲  ‖𝜃‖𝐿𝑡1�̇�∞,11   

                ≲  𝑡
1

𝑏‖𝜃‖𝐿𝑡𝑎�̇�∞,11 . 

Theorem 3.3.2 and Remark 3.3.1, gives  

𝑉(𝑡) ≲  𝑡
1

𝑏‖𝜃0‖
�̇�∞,1
1−

1
2𝑎
𝑒𝐶𝑉(𝑡)                  (4.2.20)       

Then we deduce that there exist 𝛽 > 0, such that  

 𝑡
1
𝑏‖𝜃0‖

�̇�∞,1
1−

1
2𝑎
≲ 𝛽                             (4.2.21) 

This gives that 

𝑉(𝑡) ≤ 𝐶0                                 (4.2.22) 

Now, using again Lemma 2.3.1 and Theorem 3.3.2, with 𝑞 ≥ 0, yields 

‖𝜃‖𝐿𝑡∞𝐵2,1𝑠 ≤ ‖𝜃‖�̃�𝑡∞𝐵2,1𝑠 + ‖𝜃‖�̃�𝑡1𝐵2,12  

≤ 𝐶‖𝜃0‖𝐵2,1𝑠  

Therefore, from (4.2.21), we have 

 𝑡
1
𝑏 ≲ 𝛽‖𝜃0‖

�̇�∞,1
1−

1
2𝑎

−1 . 
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Then for every 𝑡 ∈ [0, 𝑇], we deduce that the time existence 𝑇 is bounded below by 

‖𝜃0‖
�̇�∞,1
1−

1
2𝑎

−𝑏  ≤ 𝑇. 

Case 2: 𝒔 =
𝟑

𝟐
 

 Procedd the same calculation as in (3.20), we have 

‖𝜃‖𝐿𝑡1�̇�∞,11 ≲∑(1 − 𝑒−𝑐𝑡2
𝑞
2)

𝑞∈ℤ

23
𝑞
2‖∆𝑞𝜃0‖𝐿∞ 

          +∑2
3𝑞
2

𝑞∈ℤ

‖[∆𝑞 , 𝑣. ∇]𝜃‖𝐿𝑡1𝐿∞
 

       ≔ 𝐼1 + 𝐼2          (4.2.23) 

Using Lemma 1.5.4 of Holder inequality and lemma 2.4.1, then have 

𝐼2 ≲ ‖𝑣‖
�̃�𝑡
2�̇�∞,1

3
4
‖𝜃‖

�̃�𝑡
2�̇�∞,1

3
4

 

               ≲ ‖𝜃‖
�̃�𝑡
2�̇�∞,1

3
4

2            (4.2.24) 

Putting (4.2.24) into (4.2.23),  get  

‖𝜃‖𝐿𝑡1�̇�∞,11 ≲∑(1 − 𝑒−𝑐𝑡2
𝑞
2)

𝑞∈ℤ

2
3𝑞
2 ‖∆𝑞𝜃0‖𝐿∞ +

‖𝜃‖
�̃�𝑡
2�̇�∞,1

3
4

2     (4.2.25) 

It remains now to estimate ‖𝜃‖
�̃�𝑡
2�̇�∞,1

3
4

2 .  For this,  have as before, that 

‖𝜃‖
�̃�𝑡
2�̇�∞,1

3
4
≲∑(1 − 𝑒−𝑐𝑡2

𝑞
2)

1
2

𝑞∈ℤ

2
𝑞
2‖∆𝑞𝜃0‖𝐿∞ +∑2

𝑞
2

𝑞∈ℤ

‖[∆𝑞 , 𝑣. 𝛻]𝜃‖𝐿𝑡1𝐿∞
 

Using (4.2.24), obtain  

‖𝜃‖
�̃�𝑡
2�̇�∞,1

3
4
≲ 𝐶0∑(1 − 𝑒−𝑐𝑡2

𝑞
2)

1
2

𝑞∈ℤ

2
𝑞
2‖∆𝑞𝜃0‖𝐿∞ +

‖𝜃‖
�̃�𝑡
2�̇�∞,1

3
4

2 (4.2.26) 

Since  have, as 𝑡 → 0+, 
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∑(1 − 𝑒−𝑐𝑡2
𝑞
2)

1
2

𝑞∈ℤ

2
3𝑞
2 ‖∆𝑞𝜃0‖𝐿∞ → 0. 

Consider now, 𝐶1 be a sufficient small constant, and we define  

𝑇1 ≔ 𝑠𝑢𝑝 {𝑡 > 0,∑(1 − 𝑒−𝑐𝑡2
𝑞
2)

1
2

𝑞∈ℤ

2
3𝑞
2 ‖∆𝑞𝜃0‖𝐿∞ < 𝐶1}, 

Then we have with 𝑡 ≤ 𝑇1 and 𝑉(𝑡) ≤ 𝐶0, 

‖𝜃‖
�̃�𝑡
2�̇�∞,1

3
4
≲∑(1 − 𝑒−𝑐𝑡2

𝑞
2)

𝑞∈ℤ

2
3𝑞
2 ‖∆𝑞𝜃0‖𝐿∞            (4.2.27) 

Plugging now (4.2.27) into (4.2.25), get  

𝑉(𝑡) ≤ 𝐶‖𝜃‖𝐿𝑡1�̇�∞,11  

                                                ≲ ∑(1 − 𝑒−𝑐𝑡2
𝑞
2)

1
2

𝑞∈ℤ

2
3𝑞
2 ‖∆𝑞𝜃0‖𝐿∞  

                                                                         +𝐶 (∑(1 − 𝑒−𝑐𝑡2
𝑞
2)

1
2

𝑞∈ℤ

2
3𝑞
2 ‖∆𝑞𝜃0‖𝐿∞

)

2

    (4.2.28) 

Therefore,  

𝑉(𝑡) ≲ (∑(1 − 𝑒−𝑐𝑡2
𝑞
2)

1
2

𝑞∈ℤ

2
3𝑞
2 ‖∆𝑞𝜃0‖𝐿∞

)

2

. 

This gives that for 𝐶1 sufficient small,  

𝑉(𝑡) ≤ 𝐶0. 

Then in view of theorem 3.3.2, we get  

‖𝜃‖
�̃�𝑇
∞𝐵2,1

3
2
+ ‖𝜃‖𝐿𝑡1𝐵2,12 ≤ 𝐶 ‖𝜃0‖

𝐵2,1

3
2
. 

 

4.2.4 Uniqueness 
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In this paragraph, will establish a uniqueness result for the system (𝑄𝐺)1
2

 in a largest 

space, say in the space  

𝐵𝑇 ≔ 𝐿𝑇
∞�̇�∞,1

1 ∩ 𝐿𝑇
1 �̇�∞,1

1 . 

Suppose that 𝜃1and 𝜃2 are two solutions of (𝑄𝐺)1
2

 with the same initial data and 

belonging to the space 𝐵𝑇 , for a fixed time 𝑇 > 𝑜. Therefore, we have    

{

𝜕𝑡𝜃1 + 𝑣1. ∇𝜃1 + |𝐷|
𝛼𝜃1 = 0

𝑑𝑖𝑣 𝑣1 = 0

𝜃1|𝑡=0 = 𝜃0

               (4.2.29) 

and  

     {

𝜕𝑡𝜃2 + 𝑣2. ∇𝜃2 + |𝐷|
𝛼𝜃2 = 0

𝑑𝑖𝑣 𝑣2 = 0

𝜃2|𝑡=0 = 𝜃0

                (4.2.30) 

Taking the difference between (4.2.29) and (4.2.30), we get 

                                           {

𝜕𝑡(𝜃1 − 𝜃2) + 𝑣1. ∇𝜃1 − 𝑣2. 𝛻𝜃2 + |𝐷|
𝛼(𝜃1 − 𝜃2) = 0

𝑑𝑖𝑣 𝑣1 − 𝑑𝑖𝑣 𝑣2 = 0

(𝜃1 − 𝜃2)|𝑡=0 = 0
      (4.2.31) 

We calculate 𝑣1. ∇𝜃1 − 𝑣2. 𝛻𝜃2 as follows: Since 

𝑣1. ∇(𝜃1 − 𝜃2) + (𝑣1 − 𝑣2)𝛻𝜃2 = 𝑣1∇ 𝜃1 − 𝑣1𝛻 𝜃2 + 𝑣1𝛻𝜃2 − 𝑣2𝛻𝜃2 

                    = 𝑣1. ∇ 𝜃1 − 𝑣2𝛻𝜃2. 

Therefore  

𝑣1. ∇ 𝜃1 − 𝑣2. 𝛻𝜃2 = 𝑣1. ∇( 𝜃1 − 𝜃2) + (𝑣2 − 𝑣1). 𝛻𝜃2. 

We set  

Θ ≔ 𝜃1 − 𝜃2     and    𝑉 = 𝑣1 − 𝑣2. 

Then, we obtain the equations 

                    {
𝜕𝑡Θ + 𝑣1. ∇Θ + 𝑉. 𝛻𝜃2 + |𝐷|

𝛼Θ = 0
𝑑𝑖𝑣 𝑉 = 0
Θ1|𝑡=0 = 𝜃0

                    (4.2.32)  

Therefore Remark 3.3.1 allows us to applying theorem 3.3.2, we get 

‖Θ‖�̇�∞,10 ≲ 𝑒
‖∇𝑣1‖𝐿𝑡

1𝐿∞‖𝑉. ∇𝜃2‖𝐿𝑡1�̇�∞,10                (4.2.33) 
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Now, we use Proposition 2.4.1 we obtain  

‖𝑉. ∇𝜃2‖�̇�∞,10 ≲ ‖𝑉‖�̇�∞,10 ‖𝜃2‖�̇�∞,11 . 

The continuity of Riesz transforms in the homogeneous Besov space �̇�∞,1
0 , implies 

that, 

‖𝑉. ∇𝜃2‖�̇�∞,10 ≲ ‖Θ‖�̇�∞,10 ‖𝜃2‖�̇�∞,11  

Putting the  last inequality into (4.2.33),  yields   

‖Θ‖�̇�∞,10 ≲ 𝑒
‖∇𝑣1‖𝐿𝑡

1𝐿∞ ∫‖𝑉. 𝛻𝜃2(𝜏)‖�̇�∞,10

𝑡

𝑜

𝑑𝜏 

                           ≲ 𝑒
‖∇𝑣1‖𝐿𝑡

1𝐿∞ ∫ ‖Θ(𝜏)‖�̇�∞,10
𝑡

𝑜
‖𝜃2(𝜏)‖�̇�∞,11 𝑑𝜏. 

Using Lemma 1.5.6 of Gronwall’s inequality,  get  

‖Θ‖�̇�∞,10 ≤ 𝐶𝑒
‖∇𝑣1‖𝐿𝑡

1𝐿∞𝑒
‖𝜃2‖𝐿𝑡

1�̇�∞,1
0
. 

Since 𝜃2 ∈ 𝐿𝑇
1 �̇�∞,1

0  and ∇𝑣 ∈ 𝐿𝑇
∞𝐿∞. 

This gives the uniqueness of the solution Which is 𝜃1 = 𝜃2.  

Comparison between some results about (𝑸𝑮)𝜶 

The result of global existence and uniqueness for solutions of (𝑄𝐺)𝜶 is obtained by 

many numbreous authors and in a different functionals spaces. Mention the paper of [8], [14] 

,[15] and combining these results. since the authors in [14], are proved the result for 

(𝛼, 𝑝, 𝑞) ∈ ]0,
1

2
] × [2,∞[ × [1,∞[ 

and for the initial date 𝜃0  in the Besove space that is  𝜃0 ∈ 𝐵𝑝,𝑞
1+

2

𝑝
−2𝛼
. The result is also 

proved by Chae and Lee in [4], but for 𝑝 = 2 , 𝑞 = 1 and in the critical Besov space 𝐵2,1
2−2𝛼. 

Note that in this work, take 𝑝 = 2 and 𝑠 >
3

2
 as a special case of [15] and see that if 

we take 𝑞 = ∞, then the result of [15]  is the best result and more precise than [14], because 

they are proved the result in a large space and the embedding between two Besov spaces 

𝐵𝑝,1
1+

2

𝑝
−2𝛼

↪ 𝐵∞,1
1−𝛼 , for 𝑝 < ∞. This embedding gives that 

‖𝜃0‖𝐵∞,11−𝛼 ≤ 𝐶‖𝜃0‖
𝐵𝑝,1

1+
2
𝑝
−2𝛼

< ∞. 
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Conclusion 

In this work, extend the global existence and uniqueness for (𝑄𝐺)𝛼 to the 

supercritical case, that is when 𝛼 < 1. Precisely, we taking 𝛼 =
1

2
 in our work, and proved the 

global existence and uniqueness result in the Besov spaces 𝐵2,1
𝑠 , 𝑠 >

3

2
. 

 The existence and uniqueness of the solutions of 2D quasi-geostrophic equation, is 

obtained by using some a priori estimation based on the Lipschitz norm of the velocity, and 

some strong estimates on some Besov spaces. 
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Recommendation 

In this research, the researcher recommends the following problems for future work: 

(1) Studying the existence and uniqueness of the solutions for (𝑄𝐺)𝛼 in the 

subcritical, in the critical cases and in some functional spaces; 

(2) Studying the same problem in dimension three; 

(3) Studying the Boussinesq system which coupling the equation of the velocity 𝑣, 

and the equation of the temperature 𝜃 in a different functional spaces. 
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 الملخص

 

لم   لدد  هدددمغ المسي ري دددي  لي سيدد  الم ددد     مدددل وددد ه الحدددل ال ددد   هدد ا اليسي ددده هدددط ودد ه ادريسةددد  وددد    ا دد  ال

 .الم   ل  كيم ذج لي سي  ادب     يشأ فه  يي هيكي ت ال  اسل الجي فيزي سي 

فده فاد ب ودزسا الد اله س  ن  س فه و ه الي  ل  نظيي  سج   سسة اني  ةل الم   ل  همغ المسي ري دي  فده ب د يط

 :لميظ ه  الم   لات الا ي 

{
𝜕𝑡𝜃 + 𝑣. ∇𝜃 + |𝐷|

1
2𝜃 = 0,     (𝑥, 𝑡) ∈ ℝ2 × [0,∞[

𝑑𝑖𝑣 𝑣 = 0,
𝜃|𝑡=0 = 𝜃0

   

ال ده ا د   ا  ب دا الي د س  س  د  و ه المشدكة  ن ششدب و ا دا  ال  يد  هدط ال ةمد ب س فده فاد بات  اليد  ه  ة د  

 . 𝑣س هط أومه  إيج    ق يي ه   ل  ال س ان ال ه  ي مط بم   ل     ضةي  لم جغ ال يع    . ق  ن  الى   ا   و ه المشكة 
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