# Upward Closed Topology On $\mathbb N$ With Its Effect On The Levels Of $\mathbb N$

Salahddeen Khalifa Department of Mathematics Faculty of science University of Gharyan Gharyan Libya e-mail: Ksalahddeen@yahoo.com

December 31, 2022

#### Abstract

To find a connection between the usual divisibility relation that is defined on the set of natural numbers  $\mathbb{N}$  and topological concepts on  $\mathbb{N}$  for some topologies that are defined on  $\mathbb{N}$ , we have defined topology on  $\mathbb{N}$  depending on the usual divisibility relation that is defined on  $\mathbb{N}$ , this topology contains the set of all upward closed subsets of  $\mathbb{N}$  and it is called upward closed topology on  $\mathbb{N}$ . In the beginning we established some roles about upward closed subsets of  $\mathbb{N}$ . We have proved the relationship between the usual divisibility relation that is defined on  $\mathbb{N}$  and the limit points. We concluded that the topological relation between the levels of  $\mathbb{N}$  is the numbers that are in the lower levels are limit points to the up levels.

## 1 Introduction

### (a) Numbers Concepts

If we have the set of natural numbers  $\mathbb{N}$ ,  $a, b \in \mathbb{N}$  we say that a divides b (written a|b) if there is a natural number c such that b = ac.  $c \in \mathbb{N}$  is the greatest common divisor of a and b (written c = (a, b)) if and only if c|a, c|b and if d|a and d|b then  $d \leq c$ . A prime number is a natural number greater than 1 and has no divisors other than 1 and itself, and we denote the set of prime numbers by P. If  $a, b \in \mathbb{N}$ , (a, b) = 1 we say that a and b are relatively prime.

#### Theorem 1.1 The Unique Factorization Theorem [2]

Any natural number greater than one can be written as a product of primes in one and only one way.



1

*i.e* for any  $n \in \mathbb{N}$ , n > 1 can be written in exactly one way in the form  $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ , where  $e_i \ge 0, i = 1, 2, \dots, k, p_i \in P$ , and  $p_i \ne p_j$ . We call this representation by the **prime-power decomposition of n** 

As a result of the Unique Factorization Theorem, the set of natural numbers can be divided in to infinitely many levels  $L_i, i \ge 0$  such that  $L_0 = \{1\}$ ,

$$L_{i} = \{a_{1}a_{2}...a_{i} : a_{1}, a_{2}, ..., a_{i} \in P\}, i \geq 1, \mathbb{N} = \bigcup_{i=1}^{\infty} L_{i}, L_{i} \cap L_{j} = \emptyset, i \neq j$$
$$(\bigcap_{i=0}^{\infty} L_{i} = \emptyset)$$

#### (b) Topological Concepts

A topology on a set X is a collection  $\tau$  of subsets of X called the open sets satisfying the following: the empty set  $\emptyset$  and X belong to  $\tau$ , any union of elements of  $\tau$  belongs to  $\tau$ , and any finite intersection of elements of  $\tau$  belongs to  $\tau$ . We say that  $(X, \tau)$  is a topological space. A base for a topological space  $(X, \tau)$  is a collection  $\mathfrak{G} \subset \tau$  such that  $\tau = \{\bigcup_{B \in \eta} B : \eta \subset \mathfrak{G}\}.$ A subset F of X is closed if  $X - F \in \tau$ . A limit point of a set A in a topological

A subset F of X is closed if  $X - F \in \tau$ . A limit point of a set A in a topological space X is a point  $x \in X$  such that each open set of x contains some points of A other than x. i.e  $A \cap (U - \{x\}) \neq \emptyset$ , for any open set  $U, x \in U$ , we denote the set of limit points to A by A'. A set A is closed if and only if contains all of its limit points. Closure of a set A in a topological space X is denoted by  $\overline{A}$ , and defined by  $\overline{A} = A \cup A'$ . A set A in a topological space X is denote if  $\overline{A} = X$ .

# **2** Upward Closed Subsets Of $\mathbb{N}$

If A is an infinite subset of  $\mathbb{N}$ , and if the set that contains all the numbers that are divided by some numbers in A is equal to the set A, in this case, the set A is called an upward closed subset of  $\mathbb{N}$  and the set that contains all upward closed subsets of  $\mathbb{N}$  is called the collection of the upward closed subsets of  $\mathbb{N}$  as it will be explained in the following definition.

**Definition 2.1** [1] (a) For any  $a \in \mathbb{N}$ ,  $a \uparrow = \{n \in \mathbb{N} : a | n\} = \{ma : m \in \mathbb{N}\}$ (b) The collection of upward closed subset of  $\mathbb{N}$  is  $\mu = \{A \subseteq \mathbb{N} : A = A \uparrow\}$  where  $A \uparrow = \{n \in \mathbb{N} : \exists a \in A, a | n\}$ 

**Example 2.1**  $1 \uparrow = \mathbb{N}, 2 \uparrow = \{2, 4, 6, \dots, \}, P \uparrow = \mathbb{N} - \{1\}, (\mathbb{N} - \{1\}) \uparrow = \mathbb{N} - \{1\}.$ 

**Lemma 2.1** (a)  $\emptyset$ ,  $\mathbb{N} \in \mu$ ,  $L_i \notin \mu$  for all  $i \ge 0$ . (b) If  $A \in \mu$ , then  $A = \emptyset$  or infinite set.

**Proof :** (a) It is obvious that  $\mathbb{N} \in \mu$ . If  $\emptyset \uparrow \neq \emptyset$  then there exist  $n \in \mathbb{N}, n \in \emptyset \uparrow$ and  $a \in \emptyset$  such that a|n, so we have a contradiction. Thus  $\emptyset \uparrow = \emptyset$ .  $L_i \uparrow = \bigcup_{j=i}^{\infty} L_j$  for all  $i \ge 0$ .

(b) Let  $A \in \mu$ . If we suppose that  $A \neq \emptyset$ , A is finite set, let  $A = \{a_1, a_2, ..., a_n\}$ ,

 $\mathbf{2}$ 



where  $a_1 < a_2 < ... < a_n$  and let  $b \in \mathbb{N}$ ,  $b = ca_n$ , where c > 1, then  $b \in A \uparrow = A$ ,  $b \notin A$ , so we have a contradiction. Thus  $A = \emptyset$  or A is an infinite set.

**Lemma 2.2** (a)  $n \uparrow, A \uparrow$  are upward closed for any  $n \in \mathbb{N}, A \subseteq \mathbb{N}$ . (b) If A is upward closed then  $A \uparrow = (A \uparrow) \uparrow$ .

**Proof**: (a) Obvious.

(b) Let  $A \in \mu$ ,

$$(A\uparrow)\uparrow = \{n\in\mathbb{N}: \exists a\in A\uparrow, a|n\}$$
$$= \{n\in\mathbb{N}: \exists a\in A, a|n\} = A\uparrow.\blacksquare$$

**Lemma 2.3** (a) If  $n_1, n_2 \in \mathbb{N}$ ,  $n_1|n_2$ , then for any  $A \in \mu$  contains  $n_1$  contains also  $n_2$ .

(b) If  $n_1, n_2 \in \mathbb{N}, n_1 | n_2$  then  $n_2 \uparrow \subseteq n_1 \uparrow$ .

**Proof**: (a) Let  $n_1, n_2 \in \mathbb{N}, n_1|n_2$ , and let  $A \in \mu, n_1 \in A$ , so there exists  $a \in A, a|n_1$ , so  $a|n_2$ . Thus  $n_2 \in A$ .

(b) Let  $n_1, n_2 \in \mathbb{N}, n_1 | n_2, n \in n_2 \uparrow$ , so  $n = m_1 n_2, m_1 \in \mathbb{N}$ , and  $n = (m_1 m_2) n_1$ ,  $m_2 \in \mathbb{N}$ , so  $n \in n_1 \uparrow$ . Thus  $n_2 \uparrow \subseteq n_1 \uparrow$ .

**Lemma 2.4** (a) If  $A \subseteq B$ , then  $A \uparrow \subseteq B \uparrow$  for any  $A, B \subseteq \mathbb{N}$ . (b) If  $A, B \in \mu$ , then  $A \cap B \in \mu$ ,  $(\bigcap_{i=1}^{n} A_i \in \mu, where A_i \in \mu, i = 1, 2, ..., n)$ . (c) If  $A, B \in \mu$ , then  $A \cup B \in \mu$ ,  $(\bigcup_{i=1}^{n} A_i \in \mu, where A_i \in \mu, i = 1, 2, ..., n)$ . (d)  $\bigcup_{i=1}^{\infty} A_i \in \mu$ , where  $A_i \in \mu, i = 1, 2, ..., n$ 

**Proof :** (a) If  $A, B \subseteq \mathbb{N}, A \subseteq B, n \in \mathbb{N}, n \in A \uparrow$ , so there exists  $a \in A, a | n$ , so  $a \in B, n \in B \uparrow$ . Thus  $A \uparrow \subseteq B \uparrow$ .

(b) Let  $A, B \in \mu$ 

$$(A \cap B) \uparrow = \{n \in \mathbb{N} : \exists a \in A \cap B, a | n\}$$
$$= \{n \in \mathbb{N} : \exists a \in A, a | n\} \cap \{n \in N : \exists a \in B, a | n\}$$
$$= A \uparrow \cap B \uparrow = A \cap B$$

(c) Let  $A, B \in \mu$ 

$$\begin{aligned} (A \cup B) \uparrow &= \{n \in \mathbb{N} : \exists a \in A \cup B, a | n\} \\ &= \{n \in \mathbb{N} : \exists a \in A, a | n\} \cup \{n \in \mathbb{N} : \exists a \in B, a | n\} \\ &= A \uparrow \cup B \uparrow = A \cup B \end{aligned}$$

(d) similar to (c)  $\blacksquare$ 



**Theorem 2.1** (a) If  $A \subseteq \mathbb{N}$  is upward closed, then  $A = \bigcup_{a \in A} a \uparrow$ .

(b) 
$$\mu = \{\bigcup_{a \in A} a \uparrow : A \in \mu\}$$

**Proof**: (a) Let  $A \subseteq N$  is upward closed, and  $n \in A$ , then there exists  $a \in A$ **Proof**: (a) Let  $A \subseteq N$  is upward closed, and  $n \in A$ , then energy  $a \uparrow a$ . such that a|n, so  $n \in a \uparrow$ , and  $n \in \bigcup_{a \in A} a \uparrow$ . Thus  $A \subseteq \bigcup_{a \in A} a \uparrow a \uparrow$ . On the other hand, if  $n \in \bigcup_{a \in A} a \uparrow$ , then there exists  $a \in A, n \in a \uparrow$ , so a|n, and  $n \in A \uparrow$ . Thus  $\bigcup_{a \in A} a \uparrow \subseteq A \uparrow \cong A$ . Therefore  $A = \bigcup_{a \in A} a \uparrow$ . (b) By (a) and definition of upward closed.  $\blacksquare$ 

Now, since the numbers that are in the lower levels can't be divided by the numbers that are in the up levels, so when we take off the lower levels from  $\mathbb N$ we will get upward closed sets.

**Theorem 2.2**  $\bigcup_{i=k}^{\infty} L_i, k = 0, 1, 2, \dots$  are upward closed subsets of  $\mathbb{N}$ .

**Proof**: If k = 0, then  $\bigcup_{i=0}^{\infty} L_i = \mathbb{N}$  is upward closed.

If k = 1, since 1 can't be divided by any number in  $\bigcup_{i=1}^{\infty} L_i$ , so  $(\bigcup_{i=1}^{\infty} L_i) \uparrow = \bigcup_{i=1}^{\infty} L_i$ If  $k = 2, 3, \ldots, 1$  can't be divided by any number in  $\bigcup_{i=2}^{\infty} L_i$ . Let  $n \in L_j$ , where  $1 \leq j < k$ , then  $n = a_1^{n_1} a_2^{n_2} \ldots a_j^{n_j}$ , where  $n_1 + n_2 + \ldots + n_j = j$ , and  $a_1, a_2, \ldots, a_j \in P$ . n can't be divided by any number in  $L_i$ , where  $i \geq k$ . Thus  $(\bigcup_{i=k}^{\infty} L_i) \uparrow = \bigcup_{i=k}^{\infty} L_i \ \forall \ k = 0, 1, 2, \dots \blacksquare$ 

#### 3 Upward Closed Topology On $\mathbb{N}$

A collection of upward closed subsets of  $\mathbb{N}$  defined topology on  $\mathbb{N}$ , with this topology there is a connection between the usual divisibility that is defined on  $\mathbb{N}$  and the limit points. And since the levels of natural numbers have been established with divisibility, then we will look for the topological relation between all the levels  $L_i, i \geq 0$  with this topology.

**Lemma 3.1** (a) The collection of upward closed subsets of N is defined topology on  $\mathbb{N}$ .

(b) The collection  $\mathfrak{G} = \{n \uparrow : n \in \mathbb{N}\}$  is a basis for  $\mu$ .

**Proof** (a) Let  $\mu = \{A \subseteq \mathbb{N} : A = A \uparrow\}$  where  $A \uparrow = \{n \in \mathbb{N} : \exists a \in A, a | n\}$ . (1) Since  $N \uparrow = \mathbb{N}, \emptyset \uparrow = \emptyset$ , then  $\mathbb{N}, \emptyset \in \mu$ .

(2) If  $A_1, A_2, \dots, A_n \in \mu$ , then by (Lemma(2.4)(b))  $\bigcap_{i=1}^n A_i \in \mu$ (3) Let  $A_\gamma \in \mu, \gamma \in \Gamma$ , then  $A_\gamma \uparrow = A_\gamma \forall \gamma \in \Gamma$  and

$$\begin{split} (\bigcup_{\gamma \in \Gamma} A_{\gamma}) \uparrow &= \{ n \in \mathbb{N} : \exists a \in \bigcup_{\gamma \in \Gamma} A_{\gamma}, a | n \} \\ &= \bigcup_{\gamma \in \Gamma} \{ n \in \mathbb{N} : \exists a \in A_{\gamma}, a | n \} \\ &= \bigcup_{\gamma \in \Gamma} (A_{\gamma} \uparrow) = \bigcup_{\gamma \in \Gamma} A_{\gamma} \end{split}$$

So  $\bigcup_{\gamma \in \Gamma} A_{\gamma} \in \mu$ . Thus  $\mu$  defined topology on  $\mathbb{N}$ .

(b) By (Theorem (2.1)(a)) for any  $A \in \mu, A = \bigcup_{n \in A} n \uparrow$ . Thus  $\beta$  is a basis for  $\mu$ .

We denote to a topological space  $\mathbb{N}$  with  $\mu$  by  $(\mathbb{N}, \mu)$ 

**Lemma 3.2** In the space  $(\mathbb{N}, \mu)$  with upward closed topology. (a) a is a limit point for  $\{b\}$  if and only if  $a|b, a \neq b$ . (b)  $\{a\}' = \{n \in \mathbb{N} : n|a, n \neq a\}$ , for any  $a \in \mathbb{N}$ . (c) n is a limit point for A if and only if there exists  $a \in A, n|a, n \neq a$ . (d)  $A' = \{n \in \mathbb{N} : \exists a \in A, n|a, n \neq a\}$  for any  $A \subseteq \mathbb{N}$ . (e) If a|b, then  $\{a\}' \subset \{b\}'$ .

**Proof :** (a) ( $\Rightarrow$ ) Let  $a, b \in \mathbb{N}$ , a is a limit point of  $\{b\}$ , since  $a \uparrow$  is an open set,  $a \in a \uparrow$ . So  $\{b\} \cap (a \uparrow -\{a\}) \neq \emptyset$ , and  $b \in a \uparrow$ . Thus  $a|b, a \neq b$ . ( $\Leftarrow$ ) Let  $a, b \in \mathbb{N}$ ,  $a|b, a \neq b$ , and let U is an open set,  $a \in U$ , by (Lemma (2.3)(a)) we have  $b \in U$ , so  $\{b\} \cap (U - \{a\}) \neq \emptyset$ . Thus a is a limit point for  $\{b\}$ .

(b) By (a) if  $n \in \mathbb{N}, n | a, n \neq a$ , then n is a limit point for  $\{a\}$ . Thus  $\{a\}' = \{n \in \mathbb{N}, n | a, n \neq a\}$ .

(c) ( $\Rightarrow$ ) Let  $n \in \mathbb{N}, A \subseteq \mathbb{N}, n$  is a limit point for A, since  $n \uparrow$  is open set,  $n \in n \uparrow$ ,  $soA \cap (n \uparrow -\{n\}) \neq \emptyset$ , and there exists  $a \in A, n \uparrow$ ,  $n|a, n \neq b$ . ( $\Leftarrow$ ) Let  $A \subseteq \mathbb{N}, a \in A, n \in \mathbb{N}, n|a, n \neq a$ , and let U is an open set,  $n \in U$ . By (Lemma(2.3)(a)) we have  $a \in U$ , so  $A \cap (U - \{n\}) \neq \emptyset$ . Thus n is a limit point for A.

(d) By (c) if  $a \in A, n | a, n \neq a$ , then n is a limit point for A. Thus  $A' = \{n \in \mathbb{N} : \exists a \in A, n | a, n \neq a\}.$ 

(e) Let a|b, and  $n \in \mathbb{N}, n \in \{a\}'$ , then by (a) n|a, so n|b, and by (a)  $n \in \{b\}'$ . Thus  $\{a\}' \subset \{b\}'$ .

**Corollary 3.1** In the space  $(\mathbb{N}, \mu)$ : (a, b) = 1 if and only if  $\{a\}' \cap \{b\}' = \{1\}$ .

5



**Proof**: (⇒) let (a, b) = 1, and  $n \in \{a\}' \cap \{b\}'$ . By (Lemma (3.2)(a)) n|a, n|b. So n = 1, and  $\{a\}' \cap \{b\}' = \{1\}$ . (⇐) Let  $\{a\}' \cap \{b\}' = \{1\}$ , then by (Lemma(3.2)(b))  $\{n \in \mathbb{N} : n|a\} \cap \{n \in \mathbb{N} : n|b\} = \{1\}$ . Thus (a, b) = 1.

**Corollary 3.2** In the space  $(\mathbb{N}, \mu)$ .  $A \subseteq \mathbb{N}$  is closed if and only if for any  $a \in A, b|a. b \in A$ .

**Proof** :  $(\Rightarrow)$  Let  $A \subseteq \mathbb{N}$  is closed, and  $a \in A, b|a$ . So  $b \in A'$ , and since the closed set contains all its limit points, so  $b \in A$ .

(⇐) Let  $A \subseteq \mathbb{N}, a \in A, b | a, b \in A$ . So  $b \in A'$  and since b is an arbitrary number in  $\mathbb{N}$ , so A contains all its limit points and is closed.

**Corollary 3.3** In the space  $(\mathbb{N}, \mu)$ .  $n \uparrow' = \mathbb{N}$  for any  $n \in \mathbb{N}$ .

**Theorem 3.1** In the space  $\mathbb{N}$  with the upward closed topology, the numbers that are in the lower levels are limit points to the up levels.

*i.e* 
$$L'_i = \bigcup_{j=0}^{i} L_j, i = 0, 1, 2, \dots$$

**Proof** If i = 0, then for any  $n \in \mathbb{N}$ ,  $n \uparrow$  is an open set and  $\{1\} \cap (n \uparrow -\{n\}) = \emptyset$ , so  $n \notin L'_0$ . Thus  $L'_0 = \emptyset$ 

If i = 1, since  $1 \neq n$  for any  $n \in L_1, 1 \mid n$ , so by (Lemma (3.2)(c))  $1 \in L'_1$ For any  $a \in L_i, i = 1, 2, 3, ...$  since  $a \uparrow$  is an open, and  $L_1 \cap (a \uparrow -\{a\}) = \emptyset$ , so  $a \notin L'_1$ . Thus  $L'_1 = \{1\}$ 

If  $i = 2, 3, \dots$ , since 1 divided and doesn't equal any number in  $L_i, i \ge 2$  so by (Lemma(3.2)(c))  $1 \in L'_i, i = 2, 3, \dots$ 

For any two levels  $L_i, L_j, j < i, i = 2, 3, ..., j = 1, 2, ..., \text{let } a \in L_i, U \text{ is an open set}, a \in U, a = n_1^{e_1} n_2^{e_2} ..., n_j^{e_j}, n_1, n_2, ..., n_j \in P, e_1 + e_2 + ..., + e_j = j$ 

 $n = n_1^{e_1} n_2^{e_2} \dots n_j^{e_j} n_{j+1}^{e_{j+1}} \dots n_i^{e_i} \in L_i, n_1, n_2, \dots, n_i \in P, e_1 + e_2 + \dots + e_i = i.$ So a|n and by (Lemma (3.2)(c))  $a \in L'_i, i = 2, 3, \dots$ If  $a \in L_k, k \ge i$ , then  $a \uparrow$ is an open set  $a \in a \uparrow, L_i \cap (a \uparrow -\{a\}) = \emptyset$ , so a isn't

If  $a \in L_k, k \ge i$ , then  $a \uparrow$  is an open set  $a \in a \uparrow, L_i \cap (a \uparrow -\{a\}) = \emptyset$ , so a isn't a limit point to  $L_i$ . Thus  $L'_i = \bigcup_{j=0}^{i-1} L_j$  for all  $i = 2, 3, \dots$ 

Therefore  $L'_i = \bigcup_{j=0}^{i-1} L_j$  for all  $i = 0, 1, 2, \dots$ .

**Corollary 3.4** In the space  $(\mathbb{N}, \mu)$ 

(a) 
$$(\bigcup_{\substack{i=k\\ \infty}} L_i)' = \mathbb{N}$$
 for all  $k = 1, 2, \dots$   
(b)  $(\bigcup_{\substack{i=k\\ j=k}} L_i) = \mathbb{N} (\bigcup_{\substack{i=k\\ j=k}} L_i \text{ are dense in } \mathbb{N} \text{ for all } k=1, 2 \dots)$ 

**Proof** (a) Since for any  $n \in \mathbb{N}$  there exists  $a \in \bigcup_{i=k}^{\infty} L_i$  for all k = 1, 2, ... such that  $n|a, n \neq a$ , then by (Lemma (3.2)(c)) n is a limit point to  $\bigcup_{i=k}^{\infty} L_i$ . Thus



\_\_\_\_

$$(\bigcup_{i=k}^{\infty} L_i)' = \mathbb{N} \text{ for all } k = 1, 2, \dots$$
  
(b) Since  $(\bigcup_{i=k}^{\infty} L_i)' \subseteq \overline{(\bigcup_{i=k}^{\infty} L_i)}$ , then  $\overline{(\bigcup_{i=k}^{\infty} L_i)} = \mathbb{N}$  for all  $k = 1, 2, \dots$ 

# References

- [1] B.Sobot, Divisibility order in  $\beta \mathbb{N}$  arXiv:1511.01731v2 [math.LO] 17 May 2016
- [2] D.Underwood, Elementary number Theory.Second edition 2008, Dover publications,Inc.Mineola, New York
- [3] L.Azriel, Basic set Theory 2002, Dover publications, DJVU, 5.13 MB
- [4] S.Khalifa, "Divisibility in the Stone-Cech Compactification of  $\mathbb{N}$ " (2018)
- [5] S.Khalifa, A.Abominjil, Levels of Natural Numbers 2022, Gharyan University Journal
- [6] S. Willard, General Topology. 2004 Dover Publications, Inc., Mineola, New York, o-486-43479-6

7

