Cleavability over Productive and hereditary topological spaces

Ghazeel .Almahdi. Jalalah¹^(*), Hawa Alafitouri Mohammed Alwar.² ¹dept. of Mathematics, Faculty of Education, Sirte University, Libya. ² Faculty of Engineering. Zawia University .Libya.²

Abstract

In this paper new kind of cleavability was introduced over some topological spaces called μ -cleavability and studied some basic properties of concept of cleavability of a space over productive and hereditary class to show when it belongs to this class.

Key words: $\mu_pointwise$ cleavable space, *E*-cleavable spaces, μ -double cleavable space, absolutely cleavable space.

119

^(*) Email: gjellala@yahoo.com

1. Introduction

Different types of cleavability (originally named "splittability ") of Atopological space were introduced by Arhangl' Skii (1985) as following: Atopological space X is said to be cleavable (or splitable) over a class of spaces \mathcal{P} if for $A \subset X$ there exists a continuous mapping:

 $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(A) = A$, f(X) = Y.

Throughout this paper (X, τ), (Y, σ) (or simply X, and Y) denote topological spaces which no separation axioms are assumed otherwise mentioned.

2-Preliminaries

In this section, we recall some definitions and theorems which we needed in this paper.

Definition(3-1) [5]

Let $P_x: \mathbf{X} \times \mathbf{Y} \to \mathbf{X}$ be defined by the equation $P_x(\mathbf{x}, \mathbf{y}) = \mathbf{x}$.

The maps P_x and P_y are called projections of $X \times Y$ and

 $P_{y}: \mathbf{X} \times \mathbf{Y} \longrightarrow \mathbf{Y}$ be defined by $P_{y}(\mathbf{x}, \mathbf{y}) = \mathbf{y}$, onto its first and second P_{y} factors respectively.

Theorem (3-2) [6]

Let $f: X \rightarrow Y$ be continuous mapping between two topological

spaces and $X \times Y$ be a product space, and the graph $G = \{(x, y) \in X \times Y, y = f(x)\}$ then G is homeomorphic to X,

If $A \subset X$ and $g: A \rightarrow X \times g(A)$ then g is well defined and continuous.

Lemma (3-3)

The projection P_{x} , P_{y} from the product space $X \times Y$ onto X and Y respectively are continuous and open.

Definition (3-4) [4]

Atopological property is called hereditary if it carries over from a space to its subspaces, i-e if a space X has this property, then each

subspace of X has it. As T₀, T₁, T₂ (spaces) and regular space are hereditary.

Definition (3-5) [5]

Let $f: X \to Y$ be an injective continuous map, where X and Y are topological spaces. Let Z be image set of f(x). Considered a subspace of Y, then function $f': X \to Z$ obtained by restricting the range of f to be bijective. If f' happens to be homeomorphism of X with Z, we say that the map $f: X \to Y$ is a topological imbedding, or simply an imbedding of X in Y.

Definition(3-6)[1]

Atopological space X is said to be pointwise Cleavable over a class of spaces \mathcal{P} if for any $x \in X$ there exists a continuous mapping $f: X \to Y$ such that $f^{-1}f(x) = x$.

Definition(3-7)[3]

Atopological space X is said to be absolutely cleavable over a

class of spaces \mathcal{P} , if $A \subset X$, and there exists an injective continuous mapping $f: X \longrightarrow Y \in \mathcal{P}$, such that $f^{-1}f(A) = A$.

121

Definition(3-8)[2]

Atopological space X is said to be double cleavable over a class of spaces \mathcal{P} , if for any $A \subset X$, and $B \subset X$ there exists a continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(A) = A$ and $f^{-1}f(B) = B$.

3 - µ-cleavability and E-cleavability

To say topological space X is cleavable over μ -class of topological spaces, if for every subset A of X there is a space $\mu_A \in \mu$ and a continuous function $f_A: X \to \mu_A$, such that if $x \in A$ and $y \in X/A$ then

 $f_A(X) \neq f_A(y)$, then the function f_A is called a cleaving function for A.

Definition(4-1)

Aspace **X** is called μ -cleavable over **P** If for every subset $A \subset X$ there exists a map $f_A: X \to Y_A$ such that $f_A(X) = Y \in P$ and $f_A^{-1} f_A(A) = A$.

where **P** is the class of all spaces of Y and μ is the class of all continuous mappings.

Definition(4-2)

Atopological space X is said to be pointwise μ -cleavable over P if for every point $x \in X$, there exists $f \in \mu$, $f:X \to Y$, where $Y \in P$ such That $f^{-1}f(x) = x$.

Definition(4-3)

Atopological space X is said to be μ -double cleavable over P if for every pair subsets A and B of X there exists $f \in \mu$, $f: X \to Y$, where $Y \in P$ such that $f^{-1}f(A) = A$ and $f^{-1}f(B) = B$.

Definition(4-4)

Atopological space X is said to be absolutely cleavable over class of spaces \mathcal{P} , if for any subset A of X, there exists an injective continuous mapping $f \in \mu$, $f: X \to Y$, such that $f^{-1}f(A) = A$.

Note that if \mathcal{P} is the class of all spaces, we shall say that X is absolutely cleavable over \mathcal{P} . If $f \in \mu$ is an open, closed, perfect,...(continuous)

mapping, we shall say that X respectively open, closed perfectabsolutely cleavable over \mathcal{P} .

Note that if f is an injective continuous map of X into $Y \in \mathcal{P}$, then X is cleavable over \mathcal{P} , and since the definition of cleavability depends on the subset A of X, thus we might say a space X is said to be absolutely cleavable over \mathcal{P} , then the cleavability over \mathcal{P} , may regarded as generalization of continuous injection map onto $Y \in \mathcal{P}$.

Remark(4-5)

In analogy with μ -cleavability even for μ -pointwise and μ double cleavability we mean that pointwise (double) cleavability or open closed pointwise (double) cleavability over **P**.

Proposition(4-6)

Let \wp be a productive class of spaces. the following conditions are equivalent:

- (1) \boldsymbol{X} is point wise cleavable over ; $\boldsymbol{\wp}$
- (2) \boldsymbol{X} is cleavable over $\boldsymbol{\wp}$;
- (3) X is double cleavable over \wp ;
- (4) X is absolutely cleavable over \wp .

Proof:

It sufficient to prove that $(1) \rightarrow (4)$

Let $x \in X$ then there exists a space $Y_x \in \mathcal{D}$ and a continuous mapping

 $f_x: \mathbf{X} \to \mathbf{Y}_x$, such that $f_x^{-1} f_x \{ \mathbf{x} \} = \{ \mathbf{x} \}$. To a point $\mathbf{z} \in \mathbf{X}$ we assign the

 $g(Z) = \{f_x(Z)\}_{x \in X} \in \prod_{x \in X} Y_x \in \mathcal{D}$, then the mapping $g: X \to Y_x$ defined

In this way is one-to-one and continuous.

Remark (4-7)

In the following when the class \wp of space is productive. we use the term E-cleavable over \wp to indicate one of the four equivalent forms of cleavability of the proposition (4-6)

Definition (4-8) [5]

A class P of topological spaces is said to be expansive if for every $X \in P$ and continuous bijection $f: Y \to X$ then $Y \in P$.

Corollary(4-9)

124

Let \wp be a productive class of spaces, if \wp is also hereditary and X is E-cleavable over \wp , then $X \in \wp$.

Proof:

By the proposition (4-6) there exists a one-to-one continuous Mapping $f: X \to Y$ where $Y \in \mathcal{D}$ since \mathcal{D} is hereditary. it follows that

 $f(X) \in \mathcal{D}$. So $f: X \to f(X)$ is continuous bijection and then by definition (4-8) then $X \in \mathcal{D}$.

Property(4-10) [7]

Let \mathscr{D} be a productive class of spaces, If X is pointwise closed cleavable over \mathscr{D} , then X can be embedded as subspace of some space of \mathscr{D} .

Proof:

125

By hypothesis every continuous mapping $f_x: X \to Y_x$ such that

 $\{x\} = \int_{x} f(x)$ is closed and then $g: X \to g(X)$ is closed mapping, So, we have to prove this fact;

Let $A \subset X$ be closed we want to prove that $g(A) = \prod_{x \in X} f_x(A) \bigcap g(X)$ where $f_x(A)$ is closed subset of $\prod_{x \in X} Y_x$.

The inclusion $g(A) \subset \prod_{x \in X} f_x(A) \cap g(X)$ is obvious.

Now, let $\mathbf{y} \in \prod_{x \in X} f_x(\mathbf{A}) \cap g(\mathbf{X})$ and $\mathbf{z} \in \mathbf{X}$ such that $g(\mathbf{z}) = \mathbf{y}$,

then $g(z) = \{f_x^{(z)}\}_{x \in X} \in \prod_{x \in X} f_x(A)$. For every $x \in X$ we have to show that $f_x(z) \in f_x(A)$, so $f_z(z) \in f_z(A)$, then there exists $a \in A$ such that $f_z(z) = f_z(a)$ and by hypothesis (f is 1-1), $z \in A$ and so $y \in g(A)$.

The proof is complete.

Remark(4-11)

If \wp is a productive and hereditary class of spaces, then the property (4-10) is equivalent to say that if **X** is pointwise closed cleavable over \wp then **X** is absolutely closed cleavable over \wp .

4- Conclusion

We have the following two results:

- 1) Let \wp be a productive class of spaces, if \wp is hereditary and X is closed E-cleavable over \wp then $X \in \wp$.
- 2) We can apply the property (4-10) on some spaces as T_0 , T_1 , T_2 spaces, but not on normal spaces because they are not productive spaces in general.

<u>References</u>

126

- [1] Arhangel'skii, A.V and Cammaroto,F, On different types of cleavability of topological spaces, pointwise, closed, open and pseudo open, Journal of Australian Math, Soc (1992)
- [2] Arhangel'skii, A.V and Cammaroto, F., On cleavability and hereditary properties, Houston journal of Mathematics, 20, (1994).
- [3] Cammaroto, F and Lj, Kocinac, Develoable spaces and cleavability Rediconti di Mathemathica, serie VII,vol, 15, Roma (1995), 647-663.
- [4] Cammaroto.F., Cleavability and divisibility over developale spaces. Comment. Math. Univ, Carolinae 37,4 (1996) 791-796
- [5] James Dugundji, Topology. Allyn and Bacon, Inc (1966).
- [6] J.R.Munkres, Topology, second edition, Prentice-Hall, Inc, upper saddle River(2000).
- [7] S.Willard, General Topology, Addison-Wesley publishing company ,Inc, Reading, Mass (1970).