
درجتي  في وجودمن الدوران والمجال المغناطيسي  دراسة تأثير كل

 باستخدام نظريات مختلفة للمرونة الحرارية حرارة

 ــ كلية التربية الزاوية ــ جامعة الزاوية الذيب محمدالزائرة رمضان د . 

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

 : عربيالملخص ال

في هذا البحث تم  استعراض معادلات المرونة الحرارية المعممة لجسم مرن       

في من الدوران والمجال المغناطيسي  متماثل موحد الخواص تحت تأثير كل احراري  

ة الديناميكية، والأخرى تسمي وجود درجتي حرارة: إحداهما تسمي درجة الحرار

للوسط وذلك في ضوء خمس نظريات للمرونة الحرارية  درجة الحرارة الموصلة

ذات الزمن  (L-S), نظرية لورد وشولمان (CT) وهي: النظرية المرتبطة

سترخاء, نظرية وليندساي ذات زمني الإ  (G-L)سترخائى الواحد, نظرية جرين الإ

. تم تطبيق طريقة (DPL)ونموذج تسو  (G-N II)ي جرين وناخدى من النوع الثان

وهي طريقة تستخدم للحصول يجاد الكميات الفيزيائية المختلفة تحليل السلوك العادي لإ

علي الحلول المضبوطة للمسائل الرياضية تحت الدراسة وهي تعتمد علي فصل 

تفاضلية  المتغيرات، حيث تقوم بتحويل المعادلات التفاضلية الجزئية إلي معادلات

عادية وتكون بذلك قدمت نتائج مضبوطة لحلول المسائل بدون أية فرضيات رياضية 

إضافية، بالإضافة إلي سهولة تعامل الحاسب الآلي مع مخرجات هذه الطريقة والرسم 

, وتم رسم هذه الكميات ومقارنتها في وجود وعدم وجود كل بطريقة واضحة وسهلة

وكذلك في وجود وعدم وجود البارميتر الخاص  من الدوران والمجال المغناطيسي

 . (G-L, G-N II, DPL)بدرجتي الحرارة في ضوء نظريات

والنتائج التي خررج بهرا هرذا البحرث توضر  مردى الفررل برين النظريرات محرل الدراسرة 

وبواسطة عمل مقارنات بيانية للنتائج في ضوء تلك النظريرات حيرث يمكرن القرول برأن 

ت الفيزيائية تتقارب إلرى الصرفر ومحققرة لطرروط الحديرة  وأيضرا كل القيم من المعادلا

كل الردوال تكرون مسرتمرة و كمرا يوضر  هرذا العمرل إن الردوران والمجرال المغنطيسري 

لهما دور مهم في توزيع كميرات الحقرل باسرتثناء الحررارة وأيضرا يوضر  ترأثير سررعة 

الحرارية والموجرات المصدر الحراري الموجود في الوسط على سرعة تقدم الموجات 

 الميكانيكية. 
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Influence of rotation and generalized magneto-thermoelastic 

medium with two temperature under different theories 

Alzaerah. Ramadhan . Mohammed. Aldeeb. 

Department of Mathematics, faculty of education Alzawia 

University, Libya 

      Abstract: This paper studies the two dimensional problem of 

thermoelastic rotating material under the effect of magnetic field 

and a two temperature generalized thermoelasticity in the context 

of five theories of generalized thermoelasticity: Lord-Schulman 

with one relaxation time, Green-Lindsay with two relaxation 

times, Green-Naghdi theory (of type II) without energy 

dissipation and Chandrasekaraiah-Tzou theory with dual phase 

lags, as well as the coupled theory. The normal mode analysis is 

used to obtain the exact expressions for the considered variables. 

Some particular cases are also discussed in the context of the 

problem. Numerical results for the considered variables are 

obtained and illustrated graphically. Comparisons are also made 

with the results predicted by different theories (G-L, G-N II, 

DPL) in the absence and presence of rotation, magnetic field, as 

well as two temperature parameters. 

Keywords- generalized thermo-elasticity; Magnetic field; 

Rotation; Conductive   

                  temperature; Normal mode analysis. 
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1. INTRODUCTION 

     The generalized thermoelasticity theories have been 

developed with the aim of removing the paradox of infinite speed 

of heat propagation inherent in the classical 

coupled dynamical thermoelasticity theory investigated by Biot 

[6].The first attempt 

towards the introduction of generalized thermoelasticity was 

started by Lord and Shulman [21], who formulated the theory by 

incorporating a flux-rate term into conventional Fourier’s law of 

heat conduction. The L-S (Lord-Shulman) theory introduces a 

new physical concept which called a relaxation time. Since the 

heat conduction equation of this theory is of the wave-type, it 

automatically ensures finite speed of propagation for heat wave. 

The second generalization was developed by Green and Lindsay 

[16]. This theory contains two constants that act as relaxation 

times and modifies all the equations of coupled theory, not the 

heat conduction equation only. It is based on a form of the 

entropy inequality proposed by Green and Laws [15]. It does not 

violate the Fourier’s law of heat conduction when the body under 

consideration has a center of symmetry, and it is valid for both 

isotropic and anisotropic bodies. The theory of thermoelasticity 

without energy dissipation is another generalized theory and was 

formulated by Green and Naghdi[17]. It includes the thermal-

displacement gradient among its independent constitutive 

variables, and differs from the previous theories in that it does 

not accommodate dissipation of thermal energy.  

Chandrasekharaiah [9] and Tzou [27] proposed dual-phase-lag 

thermoelasticity in 1998. A survey of five different thermoelastic 
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models in which disturbances are transmitted in a wavelike 

manner is due to Hetnarski and Ignaczak [18]. 

Some researches in the past have investigated different 

problems of rotating media. In a paper by Schoenberg and 

Censor [26], the propagation of plane harmonic waves in a 

rotating elastic medium without a thermal field has been studied. 

It was shown there that the rotation causes the elastic medium to 

be depressive and anisotropic. Many author [8], [14] studied the 

effect of rotation on elastic waves. These problems are based on 

the more realistic elastic model since earth, the moon and other 

planets have angular velocity. 

The theory of magneto-thermoelasticity is concerned with the 

interacting effects of applied magnetic field on the elastic and 

thermoelastic deformations of a solid body. This theory has 

aroused much interest in many industrial appliances, particularly 

in nuclear devices, where there exists a primary magnetic field; 

various investigations are to be carried out by considering the 

interaction between magnetic, thermal and strain fields. Analyses 

of such problems also influence various applications in 

biomedical engineering as well as in different geomagnetic 

studies. The development of the interaction of electromagnetic 

field, the thermal field and the elastic field is available in many 

works such as Othman [22]. Problems related to magneto-

thermoelasticity with thermal relaxation times have been 

investigated by Othman and Singh[21],  Othman and Abbas[23],  

Abbas and A.M. Zenkour [4], [3], Abbas[2] and Abbas and Abo-

Dahab[1].   

Chen and Gurtin, [10] Chen et al. [11], [12] have formulated a 

theory of heat conduction in deformable bodies, which depends 
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upon two distinct temperatures, the conductive temperature   and 

the thermodynamic temperature .T  For time independent 

situations, the difference between these two temperatures is 

proportional to the heat supply, and in the absence of any heat 

supply, the two temperatures are identical[10]. For time-

dependent problems, however, and for wave propagation 

problems in particular, the two temperatures are in general 

different, regardless of the presence of a heat supply. The two 

temperatures ,T   and the strain are found to have representations 

in the form of a traveling wave plus a response, which occurs 

instantaneously throughout the body [7], and Warren and Chen  

[28] investigated the wave propagation in the two-temperature 

theory of thermoelasticity. Recently, Youssef [20] investigated a 

two-temperature generalized thermoelasticity theory together 

with a general uniqueness theorem and solved many applications 

in the context of this theory[31], [32]. 

The paper deals with a specific organization form of matter. 

Other forms and description are given for example in the Refs. 

[19],[25],[33].  In most cases quantum theory is necessary for the 

description of the organization forms of matter. But even the 

interpretation of modern quantum theory seems still to be an 

open question, as is demonstrated in Ref. [5], [13],[20] [29]. 

The present paper is to investigate the effect of the rotation and 

the magnetic field on the plane waves in a linearly generalized 

thermoelastic isotropic medium with a two temperature in the 

context of five theories. The normal mode analysis is used to 

obtain the exact expressions for the considered variables. The 

distributions of the considered variables are presented 

graphically. Numerical results for the field quantities are given 
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and illustrated graphically in the presence and absence of the 

rotation, magnetic field and two-temperature parameter.  

2. Formulation of the problem 

Consider the problem of a rotating thermoelastic half-space 

( 0).x  The elastic medium is permeated into a uniform magnetic 

field with a constant intensity = (0,0, ),0HH  acting parallel to the 

boundary plane (taken as the direction of the axis).z -  The surface 

of a half-space is subjected to a thermal shock which is a function 

of y and t. Thus, all quantities considered are independent of z

and the third component of the displacement vector vanishes. 

When the body forces are neglected, the governing equations are: 

(1)  Strain-displacement relation 

     
, ,

1
( ), , 1,2.

2ij i j j i
e u u i j                                                    (1) 

Where the components of the displacement vector are 
( , ,0).

i
u u v   

 (2) Stress-displacement relation 

      
02 [ (1 ) ] ,ij ij ije e T

t
     


   


                                          (2) 

Heat conduction equation [93]: 

      

*
1 1 0 0 1 0 0,

( ) ( ) ( ) ,Eii
K n C n T T n n e

t t t
     

  
    

  
         (3) 

Such that, 

        *
,

,
ii

T a               (4) 

Equation of motion 

 Since the medium is rotating uniformly with an angular 

velocity  n where n is a unit vector representing the 

direction of the axis of the rotation, the equation of motion in the 

rotating frame of reference has two additional terms (Schoenberg 
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and Censor [11]): centripetal acceleration ( ) u  due to time 

varying motion only and Corioli's acceleration 2 ,u  then the 

equation of motion in a rotating frame of reference is 

,[ { } 2( ) ] , , 1,2,3.ii i ji j iu F i j        u u                    (5) 

Where i
F is the Lorentz force and is given by: 

i0( ) .iF  J H                                                                              (6) 

The variation of the magnetic and electric fields are perfectly 

conducting slowly moving medium and are given by Maxwell's 

equations: 

0curl + ,h J E                                                                             (7) 

0curl ,μ E h                                                                               (8) 

0= ( × ),μE u H                                                                            (9) 

div = 0.h                                                                                     (10) 

Where ij are the stress components, ,   are elastic constants, 

(3 2 ) ,t       t is the thermal expansion coefficient, ij is 

Kronecker's delta, T  is the temperature above the reference 

temperature 0,T  K is the thermal conductivity, *
0 1, ,n n n are 

parameters, 1 0 0, ,    are relaxation times,  is the density, 

EC is the specific heat at constant strain,   is the conductive 

temperature,  iu  are the components of the displacement vector, 

ij
e

 
are the components of the strain tensor, 0 is the magnetic 

permeability, 0  is the electric permeability, J is the current 

density vector, E is the induced electric field vector, h is the 

 induced magnetic field vector and 0H  is the                  

constant magnetic field.  
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Expressing components of the vector 1 2 3= ( , , )J J JJ  in terms of 

the displacement by eliminating the quantities h  and E  from 

equation (7), thus yields 

1 ,y 0 0 0 2 ,x 0 0 0 3= + , = , = 0.J h ε μ H v J h ε μ H u J                          (11) 

Substituting from Eq. (11) in Eq. (6), one can get 
2 2

1 0 0 ,x 0 0 0= ,F μ H h ε μ H u     2 2
2 0 0 ,y 0 0 0= ,F μ H h ε μ H v     3 = 0.F  (12) 

From Eqs. (2) and (12) into Eq. (5), the equations of motion can 

be written as 

2 2 2 2
, , ,0 0 0 0 0 0( 2 ) ( ) (1 ) ,x x xu u v u e T H h H u

t
          


         


 

(13) 

2 2 2 2
, , ,0 0 0 0 0 0( 2 ) ( ) (1 ) .y y yv v + u v e T H h H v

t
          


        


 

(14) 

From Eqs. (7)- (10), it can be concluded that:  

0= .h H e                                                                                  (15) 

The constitutive relations, using Eq. (2), can be written as 

xx ,x ,y 0= ( + 2 ) + (1+ ) ,σ λ μ u λv γ T
t


∂

∂
                                         (16) 

yy ,x ,y 0= + ( + 2 ) (1+ ) ,σ λ u λ μ v γ T
t


∂

∂
                                         (17) 

zz 0= (1+ ) ,σ λ e γ T
t


∂

∂
                                                               (18) 

xy ,y ,x xz yz= ( + ), = = 0.σ μ u v σ σ                                                  (19) 

For simplification, the following non-dimensional variables are 

used: 
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*

0

,i ix x
c


 

*
0

0

,i i

c
u u

T

 


  *

1 0 0 1 0 0{ , , , } { , , , },t t t t          

0

{ , }
{ , } ,

T
T

T


       

0

,
ij

ij
T





       

0

= ,
h

h
H

      
*

,





       i, j 1, 2,3.    

                                 (20) 

Where, * 2
0 /EC c K     and   2

0 ( 2 ) / .c       

In terms of the non-dimensional quantities defined in (20) and 

using (15), the above governing equations take the form 

(dropping the primes over the non-dimensional variables for 

convenience) 

2 2
1 02 = (1 ) (1 ) ,

e T
u u v u h

x t x
    

  
      

  
                   (21) 

2 2
1 02 = (1 ) (1 ) ,

e T
v v u v h

y t y
    

  
      

  
                   (22) 

* 2
1 1 0 1 0 0( ) ( ) ( ) ,n n T n n e

t t t
    

  
     

    
                         (23) 

2(1 ) .T a                                                                                              

Where,
      

2 2
0 0 0

1 ,
H 




 
       

 
2
0

( )
,

c

 







         1 0= β+ ,h h
        

  
2

0 0
0 2

0

,
H

h
c






 
  

2
0

2 2
0

,
E

T

C c







      

* *2

2
0

.
a

a
c


  

 

Also, the constitutive relations (16)-( 19) reduces to 

xx ,x ,y 0= + (2 1) (1+ ) ,σ u v T
t

  
∂

∂
                                             (25) 

yy ,x ,y 0= (2 1) + (1+ ) ,σ u v T
t

  
∂

∂
                                             (26) 

zz 0= (2 1) (1+ ) ,σ e T
t

  
∂

∂
                                                       (27) 

xy ,y ,x xz yz= (1 )( + ), 0.σ u v σ σ                                            (28) 
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We define the displacement potentials ( , , )x y t  and ( , , )x y t  

which relate to the displacement components u  and v  as  

1 2, , ,x yu               1 2, , .y xv                                          (29) 

3. NORMAL MODE ANALYSIS 

The solution of the considered physical variables can be 

decomposed in terms of normal modes as the following form: 
* * * * * ** * * *

1 2 1 2[ , , , , , , , ]( , , ) [ , , , , , , , ]( )exp( ),ij iju v e T x y t u v e T x t iby        

 (30) 

Where, the amplitudes of the field quantities are
 

* * * * ** *
1 2

*[ , , , , , , , ]( )iju v e T x   ,   is the complex time constant, 

1i    and b is the wave number in the y direction. 

Using Eqs. (24), (29) and (30), Eqs. (21)-(23) lead to 
2 2 ** *

1 21 2 3 4(D ) ( D ) 0,b b b b                                                (31) 

2* *
1 25 6(D ) 0,b b                                                                   (32) 

2 2 2 **
17 8 9(D ) ( D ) 0.b b b b                                                   (33) 

Also, the constitutive relations (25) - (28) becomes 
* * * *

1D (2 1) ,xx u ib v T                                                          (34) 

* * * *

1(2 1)D ,yy u ibv T                                                           (35) 

* 2 2 **
1 1(2 1)(D ) ,zz b T                                                        (36) 

* * * * *(1 )( D ), 0.xy xz yzibu v                                                (37) 

Where 

d
D = ,

dx    

2 2
2

1

1

,
(1 )

b b
h

 




 

     2

1

2
,

( 1 )
b

h






     1 01 ,       

1
3

1

,
(1 )

a
b

h






 
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2

1
4

1

(1 )
,

(1 )

ab
b

h








 
    5

2
,

( 1 )
b







     

2 2
2

6 ,
(1 )

b b
 




 


    

7 1 0 0( ),b n n      

*
8 1 1 0( ) ( ),b n t a n             

2 * 2
9 1 1 0( ) ( )(1 ).b b n t n ab         

Eliminating  *( )x  and *
2( )x between Eqs. (31)–(33), we get the 

following sixth order ordinary differential equation satisfied with 
*
1( )x   

6 4 2 *
1[D D D ] ( ) 0.1 2 3 xA A A                                                 (38) 

Where,  

        

2
6 8 9 1 8 3 7 6 4 7

3 7 8

( )
,1

( )

b b b b b b b b b b b
A

b b b

    


  

       

2 2
1 6 9 1 6 2 5 8 3 6 7 4 7 6

3 7 8

( ) ( ) ( )
,2

( )

b b b b b b b b b b b b b b b b
A

b b b

     



                     

        
2

1 6 2 5 9 4 6 7

3 7 8

( )
.3

( )

b b b b b b b b b
A

b b b

 



 

Equation (38) can be factored as 
2 2 2 2 2 2 *

11 2 3(D )(D )(D ) ( ) 0,k k k x                                            (39) 

Where 2( 1,2,3)nk n   are the roots of the characteristic equation of 

Eq. (38). 

The solution of Eq. (38), which is bounded as ,x  is given by 

3
*
1

1

( ) .
k x

n
n

n

x M e




                                                                   (40)                                          

In a similar manner, we get 
3

*
2 1 n

n 1

( ) .
k x

n
nx H M e





                                                             (41) 

3
*

2 n

1

( ) .nk x

n

n

x H M e 



                                                                (42) 
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Where  n ( 1,2,3)M n  are some parameters and 5
1 2

6

,
( )

n

n

b
H

b k



 

2 2

7
2 2

8 9

( )
.

( )

n
n

n

b k b
H

b k b




  Substituting from Eqs. (40)–(42) and (30) in 

Eqs. (29), (24), (34)-(37) respectively, we get 
3

*

1

1

( ) ,nk x

n n

n

u x L M e




                                         
                       

(43) 

3
*

2

1

( ) ,nk x

n n

n

v x L M e




                                             
                   

(44)    

3
*

3

1

( ) ,nk x

n n

n

T x H M e




                                          
                     

(45) 

3
*

3

1

,nk x

xx n n

n

L M e 



                                              
                     

(46) 

 

3
*

4

1

,nk x

yy n n

n

L M e 



                                                                 (47) 

3
*

5

1

,nk x

zz n n

n

L M e 



                                                                    (48) 

3
*

6

1

.nk x

xy n n

n

L M e 



                                                                   (49) 

Where, 1 1 ,n n nL ibH k 
 2 1 ,n n nL ib k H 

 
2 2

3 2[1 ( )] ,n n nH a k b H    

3 2n 1 1 3(2 1)L ,n n n nL ib k L H      
       

4 2n 1 1 3L (2 1) ,n n n nL ib k L H         

2 2

5 1 3(2 1)( ) ,n n nL k b H                      6 1 2n(1 )(ib L ).n n nL L k    

The parameters n ( 1,2,3)M n  have to be determined such that the 

boundary conditions on the surface x = 0  take the form 
*(0, , ) (0, , ) exp( ),T y t f y t f t iby      (0, , ) (0, , ) 0.xx xyy t y t   (50) 

Where ( , )f y t  is an arbitrary function of , ,y t and *f  is the 

magnitude of the constant temperature applied to the boundary. 

103



Using the expressions of the variables considered into the above 

boundary conditions (50), we can obtain the following equations 

satisfied by the parameters n ( 1,2,3)M n   

3
*

3

1

,n n

n

H M f


              
3

3

1

0,n n

n

L M


             
3

6

1

0.n n

n

L M


        (51)  

Solving Eqs. (51), we get the parameters n ( 1,2,3)M n   defined as 

follows: 

 1
1 ,M





                          2
2 ,M





           
             

3
3 .M





    

(52) 

Where,  

31 32 63 33 62 32 31 63 33 61 33 31 62 32 61[ ] [ ] [ ],H R R R R H R R R R H R R R R      

  
*

1 32 63 33 62[ ],f R R R R     
*

2 31 63 33 61[ ],f R R R R   

*
3 31 62 32 61[ ].f R R R R      

4.  Particular cases 

1. Neglecting the magnetic field ( i.e. 0 0H  ) in the above 

equations,  the expressions for the displacement components, 

force stresses, conductive temperature and thermodynamic 

temperature distribution in a rotating generalized thermoelastic 

medium with two temperature can be obtained.                              

2. The expressions for the displacement components, force 

stresses and temperature distribution in a rotating generalized 

magneto-thermoelastic medium can be obtained  

from the above equations by taking 0a  ( 0a   indicates one type 

temperature). 

3. Neglecting the angular velocity (i.e. 0  ) in the above 

equations, one can obtain the displacement components, force 

stresses, conductive temperature and temperature distribution in a 
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non-rotating  generalized magneto-thermoelastic medium with 

two temperature. 

 After substituting 0   in Eqs. (5), (13)-( 14) and use Eqs. (20), 

(29) and (30), it can be reached that: 

2 2 **
11 3 4(D ) ( D ) 0,b b b                                                        (53)  

2 2 *
2(D ) 0,m                                                                          (54) 

2 2 2 **
17 8 9(D ) ( D ) 0.b b b b                                                    (55) 

Eliminating *( )x  and *
1( )x  in Eqs. (53) and (55), we get the 

following fourth order ordinary differential equations for *( )x  

and *
1( ) :x  

 4 2 **
1[D D ]{ ( ), ( )} 0.A B x x                                                   (56) 

Equation (56) can be factored as 
2 2 2 2 **

11 2(D )(D ){ ( ), ( )} 0.k k x x                                              (57) 

Where 2( 1,2)nk n   are the roots of the characteristic equation of 

Eq. (56),  
      

2

1 8 9 7 4 3

3 7 8

( )
,

( )

b b b b b b b
A

b b b

   


  

2

1 9 4 7

3 7 8

,
( )

b b b b b
B

b b b

 


  
2

2

1

1

,
(1 )

b b
h




  

   

2
2 2 .

(1 )
m b




 


 

The solution of Eqs. (56) and (54), take the form 
2

*
1

1

( ) ,nk x

n

n

x Z e




                                             (58)                                                              

2
*

1

1

( ) ,nk x

n n

n

x G Z e 




 
                                    (59)

                                      
*
2 3( ) .mxx Z e 

                                               
(60)

                                                           

Where ( 1,2,3)nZ n   are some parameters and 
2

1
1 2

4 3

.n
n

n

k b
G

b b k





 

Using Eqs. (24)-(30), (58)-(60), we get the expressions for 

displacement components, force stresses, conductive temperature 
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and temperature distribution in a non-rotating generalized 

magneto-thermoelastic medium with two temperature as follows:
 2

*
3

1

( ) ,
k x mxn

n n
n

u x k Z e ibZ e
 



                                              (61) 

2
*

3
1

( ) ,
k x mxn

n
n

v x ib Z e m Z e
 



 
                                             

(62)     

  
2

*
1

1

( ) ,
k xn

nn
n

x G Z e




                                                              (63)  

2
*

2
1

( ) ,
k xn

nn
n

T x G Z e




                                                             (64) 

2
*

3 1 3
1

( ) ,
k x mxn

xx nn
n

x G Z e s Z e
 



                                          (65) 

2
*

4 1 3
1

( ) ,
k x mxn

yy nn
n

x G Z e s Z e
 



                                          (66)  

2
*

5
1

( ) ,
k xn

zz nn
n

x G Z e




                                                            (67)  

2
*

6 2 3
1

( ) .
k x mxn

xy nn
n

x G Z e s Z e
 



                                          (68)  

Where, 
2 2

2 1[1 ( )] ,nn nG a k b G  

             

2 2
3 1 2(2 1) ,nn nG k b G    

 
2 2

4 1 2(2 1) ,nn nG k b G          2 2
5 1 2(2 1)( ) ,nn nG k b G      

6 2 ( 1) ,nnG ib k      1 2 ( 1),s ibm       2 2
2 ( )( 1).s m b     

Applying the boundary conditions (50) at the surface 0,x   a 

system of three equations is obtained. After solving this system, 

the coefficients ( 1,2,3)nZ n   can be defined as follows: 

1
1 ,Z





          2

2 ,Z





                         3
3 .Z




                
     (69) 

106



Where,   

21 32 2 62 1 22 31 2 61 1[ ] [ ],G G s G s G G s G s            2

*
1 32 62 1[ ],f G s G s    

*
2 31 2 61 1[ ],f G s G s           

*
3 31 62 32 61[ ].f G G G G    

5.  Special cases of thermoelastic theory 

 Equations (3) and (5) are the field equations of the generalized 

linear magneto-thermoelasticity for a rotating media, applicable 

to the coupled theory, four generalizations, as follows: 

 

Theory 
  

*n   1n   0n   1t   0  0  

The coupled theory (CT) 
   1   1  

0  
  0    0   0  

Lord-Shulman theory (L-S)    1   1      1   0 0    0 

Green-Lindsay theory (G-L)    1   1    0   0 0  0  

Green-Naghdi without 

energy dissipation (G-N II) 

   1   0    1   0    1   0 

Chandrasekaraiah-Tzou 

theory (DPL) 

  1   1    1 0  0   0 

 

6.  Numerical results and discussions  

 Copper material was chosen for purposes of numerical 

evaluations and the constants of the problem were taken as 

follows: 
10 27.76 10 . ,N m            

10 1 23.86 10 . . ,kg m s             

1 1386 . . ,K w m k                                                                                                                                                

5 11.78 10 ,t k         38954 . ,kg m      
1 1383.1 . . ,EC J kg k     

0 293 .T K     

The comparisons were carried out for 
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0.1,y     * 1,f     0 ,i        0 0 . 7 ,      0 . 1,     0 . 5 ,b 
  

1 0.6,t 
 
 0 0.8,       0 1.1,       0.1,a       0.1,       8

0 10 .H 
 

The computations were carried out for a value of time 0.7.t   The 

numerical data, outlined above, were used for the distribution of 

the real part of the displacement components u and ,v the 

conductive temperature , the thermodynamic temperature T and 

the stress components xx and
 xy for the problem under 

consideration. All the considered variables depend not only on 

the variables ,t x and ,y  but also depend on the thermal 

relaxation times 1 0,t   and 0.  The results are shown in Figs. 1-9. 

The graphs show the six curves predicted by three different 

theories of thermoelasticity (G-L, G-N II, and DPL). In these 

figures, the solid lines represent the solution in the generalized 

G-L theory, the dashed lines represent the solution using G-N II 

model and the dashed-dotted lines represent the solution in the 

context of the DPL model.
 
Here all the variables are taken in 

non-dimensional forms. 

 Figures 1-4 show comparisons among the considered variables 

in the absence and presence of the magnetic field (i.e. 
8

0 0,10H  ) 

for = 0.1 and a = 0.1. 

 Figure 1 shows that the distribution of the vertical 

displacement v always begins from negative values. In the 

context of the three theories, the values of the vertical 

displacement v decrease in the beginning to a minimum value in 

the range  0 1.2x ,   then increase in the range 1.2 8x ,   and 

also move in a wave propagation. It is also clear that the 

magnetic field acts to increase the magnitude of the real part of v

and the values of v based on the G-N II model are large 
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compared to those based  on the G-L  theory  while they are  

small  compared to those based on  the DPL model.  

 Figures 2 and 3 demonstrate that the distribution of the 

conductive temperature  and the thermodynamic temperature T

begins from a positive value and satisfies the boundary 

conditions at = 0.x  In the context of the three theories and in the 

absence and presence of a magnetic field (i.e. 
8

0 0,10H  ),   and 

T decrease in the range 0 8.x   The values of   and T  

converge to zero with increasing the distance x at 8.x   It is also 

obvious from this figure that the magnetic field has no great 

effect on the distribution of the conductive temperature   and the 

thermodynamic temperature .T  Also, the values of both   and T

in the context of the DPL model are higher than those in the 

context of the G-L theory while they are lower than those in the 

context of the G-N II model. 

 Figure 4 shows the distribution of the stress component xy

and demonstrates that it reaches a zero value and satisfies the 

boundary conditions at 0.x   In the context of the three theories, 

the values of xy increase in the beginning to a maximum value 

in the range 0 1.7,x  then decrease in the range 1.7 8.x  It is 

clear that the magnetic field acts to decrease the magnitude of the 

real part of .xy This is mainly due to the fact of magnetic field 

corresponds to the term signifying positive force that tend to 

accelerate the model particles. The values of xy  based on the G-

N II model are large compared to those in the context of the DPL 

model while they are small compared to those in the context of 

the G-L theory. 
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 Figures 5-7 show comparisons among the considered variables 

for different values of ( 0,0.1)   in the presence of a magnetic 

field 810   and 0.1.a   

 Figure 5 depicts that the distribution of the horizontal 

displacement u  always begins from negative values. In the 

context of the three theories, the values of u start with increasing 

to a maximum value in the range 0 1.2,x  then decreasing in 

the range 1.2 8x   for 0.1.   However, in the context of the 

three theories, the values of u  increases in the range 0 8x   for 

0.   It also shows that the rotation acts to increase the 

magnitude of the real part of .u  

 Figure 6  depicts that the distribution of the thermodynamic 

temperature   always begins from a positive value and satisfies 

the boundary conditions at 0.x   In the context  of  the  three  

theories, the values of the  temperature   decrease in the range 

0 8x   for 0,0.1.     

 Figure 7 demonstrates that the distribution of the stress 

component ,xx  in the context of the three theories, begins from 

zero and satisfies the boundary conditions at 0x   for 0,0.1.   

In the context of the three theories, the values of xx  start with 

decreasing to a minimum value in the range 0 1.2,x   then 

increase in the range 1.2 8x   for 0,0.1.   It is also clear that 

the rotation acts to decrease the magnitude of the real part of 

.xx    

 Figures 8-9  show comparisons among the considered 

variables for two different values of the non-dimensional, two 

temperature parameter ( 0,0.1)a a   where 0a   indicates one-type 

temperature and 0.1a   indicates two-type temperature in the 
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presence of a magnetic field (i.e. 8
0 =10 ) and rotation (i.e. 

0.1   ). 

 Figure 8  shows the variation of the vertical displacement  v  

for 0,0.1.a   In this figure, a significant difference in the vertical 

displacement v  is noticed for different values of the non-

dimensional two temperature parameter a.  Also, this figure 

shows that the magnitude of  v  for  0.1a   is higher than that of 

0.a    

 Figure 9 gives the variation of the conductive temperature   

versus distance x in the case of one-type temperature as well as 

two-type temperature. For both of the cases, it is observed that 

conductive temperature decreases with the increase of distance 

and finally goes to zero.    

 3D curves 10-12  are representing the relation between the 

physical quantities and both components of distance, in the 

presence of the magnetic field 810   and the rotation effect 

0.1   in a generalized thermoelastic medium with two 

temperature (a  ), in the context of the dual-phase-lag model 

(DPL). These figures are very important to study the dependence 

of these physical quantities on the vertical component of 

distance. The curves obtained are highly depending on the 

vertical distance and all the physical quantities are moving in 

wave propagation. 

7.  Conclusion 

By comparing the figures that were obtained for the three 

thermoelastic theories, important phenomena are observed: 

1.  The values of all physical quantities converge to zero with 

increasing distance x,         

   and all functions are continuous. 
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2.   All physical quantities to satisfy the boundary conditions. 

3.   The phenomenon of finite speeds of propagation is 

manifested in all   

        figures.. 

4. The rotation and magnetic field have important roles in the 

distribution   

    of the field quantities except the temperature. 

5.  Analytical solutions based upon normal mode analysis of the   

      thermoelastic problem in solids have been developed and 

utilized. 

 

Fig. 1 Vertical displacement distribution v in the absence and 

presence of magnetic field 

Fig. 2 Conductive temperature distribution  in the absence and 

presence of magnetic field 
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 Fig. 3 Thermodynamic temperature distribution T in the absence 

and presence of magnetic field 

 
Fig. 4 Distribution of stress component xy in the absence and 

presence of magnetic field 

Fig. 5 Horizontal displacement distribution u in the absence and 

presence of rotation 
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Fig. 6 Thermodynamic temperature distribution T in the absence 

and presence of rotation 

Fig.7 Distribution of stress component xx in the absence and 

presence of rotation 

 Fig.8 Vertical displacement distribution v for two different values  

of a two temperature parameter 0,0.1a    
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Fig. 9 Conductive temperature distribution   for two different 

values of a two temperature parameter 0,0.1a   

 

 
Fig. 10 (3D) Distribution of the displacement component v  

against both components     

                    of distance based on DPL model at 0.1, 0.1a    

and 8
0 10 .H   
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Fig. 11 (3D) Thermodynamic temperature distribution T  against 

both components        

                     of distance based on DPL model at 0.1, 0.1a    

and 8
0 10 .H   

 

 
Fig. 12 (3D) Distribution of the stress component xy  against 

both components  

                     of distance based on DPL model at 0.1, 0.1a    

and 8
0 10 .H   
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