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Abstract 

This thesis discusses one of the unified methods used to solve linear, non-linear 

equations, ordinary and partial differential equations known as the Adomian 

decomposition method. The Adomian decomposition method is discussed in 

details to include its background information, polynomials, convergence, 

formulation, boundary conditions, applications and advantages. Once the 

Adomian decomposition method has been thoroughly presented, its applications in 

systems of non-linear equations will be discussed in details and numerical 

examples will be provided to show the effectiveness of this method. Results of 

these numerical examples show that the Adomian decomposition method is an 

effective method to solve systems of non-linear equations with ease and favorable 

accuracy. 
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Introduction  

Developing an unified method to solve linear, non-linear equations, ordinary 

and partial differential equations  is one of many goals mathematicians aim 

to achieve. This goal has always been difficult to achieve due to the 

irregularities associated with non-linear equations, and this difficulty is 

increased when dealing with system of such equations. The goal of this 

thesis is to give a detailed analysis of this method and its applications in 

systems of non-linear equations. 

One of researchers who succeeded in developing an unified theory to solve 

linear and nonlinear ordinary and partial differential equations was the 

mathematician known as George Adomian. George Adomian developed his 

theory during the period of 1970-1990, and named after himself as the 

“Adomian decomposition method“ [8]. This method is a semi-analytical 

method used to solve ordinary and partial linear and nonlinear differential 

equations. This method employs polynomials known as “Adomian 

polynomials“  that allow for solution convergence of the nonlinear portion of 

the equation without the need to linearize the equation. This is considered a 

crucial aspect of the Adomian decomposition method. This method enjoys 

greater flexibility than the direct Taylor series expansion since the 

polynomials generalize mathematically to a Maclaurin series about an 

arbitrary external parameter [13].  The Adomian decomposition method, 

henceforth referred to as ADM, has received extensive amount of research 

due to its ability to be applied to real world problems in both the science and 

engineering disciplines. Some of these studies aim to study the methods 

ability to solve nonlinearities including product, polynomial, exponential, 
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hyperbolic, … etc. [4] [5] [6] [7], while other studies aimed to modify and 

enhance this method to improve convergence. 

Numerical examples will be provided and solved to show case the 

effectiveness of this method. 

This thesis will be in follow the following : 

Chapter one will include a brief summary of the background information 

needed to understand and construct the rest of the thesis. 

Chapter two will provide detailed information on the Adomian 

decomposition method. 

Chapter three will discuss the main topic of this thesis, which is the solving 

of non-linear system of equations. This chapter will also solve two numerical 

examples, to show the effectiveness of the Adomian decomposition method, 

and will include the conclusions made in this thesis .
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Fundamental concepts 

  

1.1 Basic definitions 

1.2 Solution of first order ODE 

1.3 System of equations 

1.4 System of differential equations 

1.5 System of differential equations solution method 

1.6 System of non-linear equations 
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Fundamental concepts 

In this chapter we give a brief introduction and a background information 

summary of differential equations, moreover system of equations and system 

of differential equations will be provided to understand the basics of this 

thesis, are taken from [3][12][16][18][22][25].  

1.1 Basic definitions 

Definition 1.1 

 A differential equation of 𝑛th order is considered linear if it takes on the 

following form: 

𝑎𝑛(𝑥)𝑦(𝑛)(𝑥) + 𝑎𝑛−1(𝑥)𝑦(𝑛−1)(𝑥) + ⋯ + 𝑎1(𝑥)𝑦′(𝑥) +

𝑎0(𝑥)𝑦(𝑥) = 𝑔(𝑥)                                                           (1.1) 

where 𝑔 is any given function of the independent variable 𝑥 and it is 

assumed that 𝑎𝑛(𝑥) ≠ 0. On the other hand, any equation that does not take 

on the form of equation (1.1) is considered a non-linear differential equation 

of  𝑛th order. For linear differential equations of 1st order, the previous 

equation then becomes: 

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)                                                       (1.2) 

The most important aspect of  linear differential equations, is that there are 

no products of the function 𝑦(𝑥) not are there for its derivatives and neither 

of them occur to any power other than the first. The linearity of the equation 

is determined solely on 𝑦(𝑥) and its derivatives and the coefficients 

𝑎0(𝑥), … , 𝑎𝑛(𝑥) and 𝑔(𝑥) can be zero or non-zero functions, constants or 

non-constant functions, linear or non-linear functions without affecting the 



Chapter One                           Fundamental concepts 

5 

linearity of the equation. A linear differential equation can be ordinary or 

partial depending on the form of the derivatives. 

Example of linear ordinary differential equation include: 

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑔(𝑥)                                                 

𝑦(4) + 10𝑦′′′ − 4𝑦′ + 2𝑦 = cos (𝑡)                               

The following equation represents a non-linear equation: 

sin(𝑦)
𝜕2𝑦

𝜕𝑥2
= (1 − 𝑦)

𝜕𝑦

𝜕𝑥
+ 𝑦2𝑒−5𝑦                              

Definition 1.2 

Differential equations are considered homogeneous if they satisfy either of 

the two following conditions: 

1. If a first order differential equation can be written in the following form, 

then it is considered homogeneous: 

𝑓(𝑥, 𝑦)𝑑𝑦 = 𝑔(𝑥, 𝑦)𝑑𝑥                                              (1.3) 

where 𝑓 and 𝑔 are homogeneous functions of the same degree of 𝑥 and 𝑦. In 

this case, the change of variable 𝑦 =  𝑢𝑥 leads to an equation of the form: 

𝑑𝑥

𝑑
= ℎ(𝑢)𝑑𝑢                                                               (1.4) 

which can be solved with ease via integration of both members. 

2. A differential equation is homogenous if it is a homogenous function of 

the unknown function and its derivatives. For linear differential equations, 

this translates to the equation having no constant terms. Therefore, the 

solutions of any linear ordinary differential equation of any order may be 

deduced by integration from the solution of the homogeneous equation 

obtained by removing the constant term. 
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Any differential equation does not satisfy either of these conditions are 

considered non-homogenous differential equations. For example, take the 

following simple homogenous differential equation: 

𝑦′′ = 𝑥𝑦                                                                       

The equation is considered homogenous since only the unknown function 𝑦 

and its derivatives are present. Now take the following non-homogeneous 

differential equation: 

𝑦′′ = 𝑥𝑦 + (𝑥 + 1)                                                      

This equation is considered non-homogeneous since it contains the term    

(𝑥 + 1), which does not involve the unknown function 𝑦 and its derivatives. 

A differential equation is also considered homogenous if both 𝑥 and 𝑦 have 

the same power. for example, 

(−𝑥 + 𝑦)
𝑑𝑦

𝑑𝑥
= 2𝑦                                                      

Since both (– 𝑥 + 𝑦) and 2𝑦 both have the same power (1), they are 

considered homogeneous. As for linear ordinary differential equation of 

order n, it is considered homogenous if the following form is taken: 

𝑎𝑛(𝑥)𝑦(𝑛)(𝑥) + 𝑎𝑛−1(𝑥)𝑦(𝑛−1)(𝑥) + ⋯ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 0           (1.5) 

In other words, if all the terms are proportional to a derivative of 𝑦 (or 𝑦 

itself) and there is no term that contains a function of 𝑥 alone then the linear 

ordinary differential equation is considered homogenous. It should be 

mentioned that the existence of a constant term is a sufficient condition for 

an equation to be non-homogeneous. 
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Definition 1.3 

Let 𝐷 ⊂ ℝ𝑛, 𝑓(𝑥, 𝑦) continous function, we say that 𝑓(𝑥, 𝑦) satisfies 

Lipshitz condition if there exist constant 𝐿 > 0, such that 
𝜕𝑓

𝜕𝑦
 exists and its 

bounded in D, ∀ 𝑥, 𝑦 ∈ 𝐷. 

Definition 1.4 

The solution of ODE is a function that satisfies the differential equation and 

the derivatives exist. 

1.2 Solution of first order ODE 

There are many ways to solve a first order differential equation, examples of 

these include: 

1.2.1 Separable differential equations  

A separable  first order differential equation is any differential equation that 

can be written in the following form: 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) =

𝐴(𝑥)

𝐵(𝑦)
                                                     (1.6) 

This is solved as follows: 

𝐵(𝑦)𝑑𝑦 = 𝐴(𝑥)𝑑𝑥 ⟹ ∫ 𝐵(𝑦)𝑑𝑦 = ∫ 𝐴(𝑥)𝑑𝑥                    (1.7) 

This provides an implicitly defined solution of  𝑦(𝑥). 

1.2.2 Homogenous differential equations 

A homogenous differential equation of the first order can be written in the 

form: 

𝑦′ = 𝑓 (
𝑦

𝑥
),                                                                     (1.8) 
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and can be made separable under the change of variable: 

𝑦 = 𝑢𝑥,                                                                         (1.9) 

and then: 

𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢                                                           (1.10) 

1.2.3 Exact differential equations 

Consider the following standard form of ordinary differential equations: 

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0                                      (1.11) 

The necessary and sufficient condition for the D.𝑓 to be exact is: 

𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
                                                                       (1.12) 

This means the function 𝑓(𝑥, 𝑦) exists such that: 

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 = 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0        (1.13) 

Then we have two equations: 

 
𝜕𝑓

𝜕𝑥
= 𝑀(𝑥, 𝑦) and    

𝜕𝑓

𝜕𝑦
= 𝑁(𝑥, 𝑦)                                (1.14) 

Starting with the first equation and integrating both sides with respect to 𝑥: 

∫
𝜕𝑓

𝜕𝑥
𝑑𝑥 = ∫ 𝑀(𝑥, 𝑦)𝑑𝑥                                              (1.15) 

which becomes: 

𝑓(𝑥, 𝑦) = ∫ 𝑀(𝑥, 𝑦)𝑑𝑥 + ℎ(𝑦)                                 (1.16) 
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where ℎ is an arbitrary function of 𝑦. Now to use the second equation, take 

the partial derivative of 𝑓 with respect to 𝑦 and set it equal to 𝑁(𝑥, 𝑦): 

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
∫ 𝑀(𝑥, 𝑦)𝑑𝑥 + ℎ′(𝑦) = 𝑁(𝑥, 𝑦)                 (1.17) 

Once we solve ℎ′(𝑦), we integrate it to find ℎ(𝑦). Then, we have found our 

solution: 

∫ 𝑀(𝑥, 𝑦)𝑑𝑥 + ℎ(𝑦) = 𝑐                                             (1.18) 

1.2.4 Integrating factor 

If the following equation is not exact: 

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0                                       

and 𝜇(𝑥, 𝑦) is the integrating factor for this equation, then: 

𝜇𝑀𝑑𝑥 + 𝜇𝑁𝑑𝑦 = 0                                                     (1.19) 

will be an exact equation i.e. 

𝜕(𝜇𝑀)

𝑑𝑦
=

𝜕(𝜇𝑁)

𝜕𝑥
                                                               (1.20) 

𝜇
𝜕𝑀

𝜕𝑦
+ 𝑀

𝜕𝜇

𝜕𝑦
=  𝜇

𝜕𝑁

𝜕𝑦
+ 𝑁

𝜕𝜇

𝜕𝑦
                                        (1.21) 

and 

𝜇 (
𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
) = 𝑁

𝜕𝜇

𝜕𝑥
− 𝑀

𝜕𝜇

𝜕𝑦
                                        (1.22) 

Now, we have two cases to find the integrating factor: 

First case: If 𝜇 = 𝜇(𝑥), that means 
𝜕𝜇

𝜕𝑥
=

𝑑𝜇

𝑑𝑥
, 

𝜕𝜇

𝜕𝑦
= 0 and we can write 

equation (1.22) in the following form: 
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1

𝜇

𝑑𝜇

𝑑𝑥
=

1

𝑁
[

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
] = 𝑓(𝑥)                                         (1.23) 

𝑑𝜇

𝜇
= 𝑓(𝑥)𝑑𝑥 ⟹ ln 𝜇 = ∫ 𝑓(𝑥)𝑑𝑥                              (1.24) 

Then, the integrating factor is: 

𝜇 = 𝑒∫ 𝑓(𝑥)𝑑𝑥                                                               (1.25) 

Second case: If 𝜇 = 𝜇(𝑦), that means 
𝜕𝜇

𝜕𝑦
=

𝑑𝑢

𝑑𝑦
, 

𝜕𝜇

𝜕𝑥
= 0 and by the same way 

we get: 

1

𝜇

𝑑𝑢

𝑑𝑦
=

1

𝑀
[

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
] = 𝑔(𝑦)                                         (1.26) 

Then, 

𝜇 = 𝑒∫ 𝑔(𝑦)𝑑𝑦                                                               (1.27) 

1.2.5 Linear ODE of 1st order 

Consider the ODE of the form: 

𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥)                                                     (1.28) 

where P and Q are given functions of 𝑥, defined on a certain interval I. This 

equation is called linear equation. 

To solve this equation, we have to change it to exact equation. Now put 

equation (1.28) to the form: 

𝑑𝑦 + 𝑃(𝑥)𝑦𝑑𝑥 = 𝑄(𝑥)𝑑𝑥 ⟹ 𝑑𝑦 + (𝑃𝑦 − 𝑄)𝑑𝑥 = 0             (1.29) 

Suppose there exist 𝜇 = 𝜇(𝑥) an integral factor that make the previous 

equation an exact equation. Thus: 
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𝜇𝑑𝑦 + 𝜇(𝑃(𝑥)𝑦 − 𝑄(𝑥))𝑑𝑥 = 0                                         (1.30) 

Let  𝑀 = 𝜇(𝑃(𝑥)𝑦 − 𝑄(𝑥)) ⟹
𝜕𝑀

𝜕𝑦
= 𝜇𝑃(𝑥)                                        (1.31) 

and  

𝑁 = 𝜇 ⟹
𝜕𝑁

𝜕𝑥
=

𝑑𝜇

𝑑𝑥
                                                                 (1.32) 

As we know: 

𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
⟹ 𝜇𝑃 =

𝑑𝜇

𝑑𝑥
                                                             (1.33) 

We can use separable equations for last equation to get: 

𝑑𝜇

𝜇
= 𝑃(𝑥)𝑑𝑥                                                                        (1.34) 

and integrating both sides, we get: 

ln 𝜇 = ∫ 𝑃(𝑥)𝑑𝑥                                                                 (1.35) 

i.e. the integral equation is: 

𝜇 = 𝑒∫ 𝑃(𝑥)𝑑𝑥                                                                       (1.36) 

By multiplying equation (1.28) by 𝜇, the equation becomes: 

𝜇𝑦′ + 𝜇𝑃(𝑥)𝑦 = 𝜇𝑄(𝑥)                                                       (1.37) 

Thus, 

𝑑

𝑑𝑥
(𝜇𝑦) = 𝜇𝑄(𝑥)                                                                  (1.38) 

By integrating: 

𝜇𝑦 = ∫ 𝜇𝑄(𝑥)𝑑𝑥 + 𝑐                                                          (1.39) 



Chapter One                           Fundamental concepts 

12 

i.e. the general solution is: 

𝑦 = 𝜇−1[∫ 𝜇𝑄(𝑥)𝑑𝑥 + 𝑐]                               (1.40) 

1.2.6 Bernoulli’s equation 

A differential equation of the form: 

𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥)𝑦𝑛                                    (1.41) 

where 𝑛 is a real parameter such that 𝑛 does not equal 0 or 1 is said to be of 

Bernoulli type. Letting: 

𝑧 = 𝑦1−𝑛,      𝑧′ = (1 − 𝑛)𝑦1−𝑛𝑦′                   (1.42) 

The equation transforms into: 

𝑧′ + (1 − 𝑛)𝑃(𝑥)𝑧 = (1 − 𝑛)𝑄(𝑥)                (1.43) 

and thus it becomes a linear equation and is solved as a linear equation. 

1.3 System of equations 

A system of equations is a finite set of equations for which common 

solutions are sought. An equation system is usually classified in the same 

manner as single equations. However, this study will focus on two main 

classifications which are the linear and non-linear equations. The general 

form of a system of 𝑚 linear equations with 𝑛 unknowns is written as: 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

                           (1.44) 

where x1, x2, …, xn are the unknowns and a11, a12, …, amn are the systems 

coefficients and b1, b2, …, bm are the constant terms. The coefficients and 
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unknowns are often real or complex numbers, however, integers, rational 

numbers, polynomials and elements can also be observed in systems of 

linear equations. Generally, the relationship between the number of 

equations and the number of unknowns is what determines the behavior of a 

linear system. The following points summarize the possible general 

behaviors: 

1. A system with fewer equations than unknowns has infinitely many 

solutions, but it may have no solution. Such a system is known as an 

underdetermined system. 

2. A system with the same number of equations and unknowns has a 

single unique solution. 

3. A system with more equations than unknowns has no solution. Such 

a system is also known as an overdetermined system. 

The term “generally” is used since not all system of equations may follow 

the general behavior and may behave differently for specific values of the 

coefficients of the equations. A system of linear equations behaves 

differently from the general case if the equations are linearly dependent, or if 

it is inconsistent and has no more equations than unknowns. A system of 

linear equations can be categorized further depending on its properties into 

independent and consistent system of linear equations. The equations of a 

linear system are said to be independent if none of the equations can be 

derived algebraically from the others. When the equations are independent, 

each equation contains new information about the variables, and removing 

any of the equations increases the size of the solution set. Alternatively, the 

equations of a linear equation are not considered independent if any of the 

equations can be derived from the other. This can be via multiple algebraic 
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methods such as multiplication, addition and subtraction. This can include 

all or part of the systems equation and since the equations can be derived 

from one another, any one of the equations can be removed without affecting 

the solution set. As for consistency, a linear system is inconsistent if it has 

no solution, and otherwise it is said to be consistent. When the system is 

inconsistent, it is possible to derive a contradiction from the equations, that 

may always be rewritten as the statement 0 = 1. It is possible for three linear 

equations to be inconsistent, even though any two of them are consistent 

together. In general, inconsistencies occur if the left-hand sides of the 

equations in a system are linearly dependent, and the constant terms do not 

satisfy the dependence relation. A system of equations whose left-hand sides 

are linearly independent is always consistent. As for whether the system of 

linear equations is considered homogenous or not, it is considered 

homogenous if all of the constant terms are zero, i.e. follows this general 

form: 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 0
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 0

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 0

                     (1.45) 

A homogeneous system is equivalent to a matrix equation of the form  

A 𝑥 =0. Any system of equations that don’t satisfy these conditions are 

considered non-homogenous.  

A nonlinear system is a system in which the change of the output is not 

proportional to the change of the input, also non-linear system of equations 

is a system in which at least one of the variables has an exponent other than 

1 and/or there is a product of variables in one of the equations. Most systems 
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are nonlinear in nature, which is why it is of great interest to many science 

disciplines such as engineering, mathematics … etc. Nonlinear dynamical 

systems, describing changes in variables over time, may appear chaotic, 

unpredictable, or counterintuitive, contrasting with much simpler linear 

systems. A nonlinear system is described in mathematics using nonlinear 

system of equations, which are equations that do not fall under the category 

of linear equations. Systems can be defined as nonlinear, regardless of 

whether known linear functions appear in the equations. As nonlinear 

dynamical equations are difficult to solve, nonlinear systems are commonly 

approximated by linear equations (linearization). 

1.4 System of differential equations 

In most real life problems, a system is governed by more than one 

differential equation especially when two variables effect one another, this is 

known as a system of differential equation. There are numerous applications 

of systems of differential equations, perhaps the most well-known example 

is the predator-prey interactions. Since the number of preys effect the 

number of predators in a system and the number of predators affects the 

number of prey. Since both of these variables affect one another, their 

interaction is modeled using a system of differential equations. To further 

explain this, the following equation represents a first order linear differential 

equation: 

𝑥′
1 = 2𝑥1 − 4𝑥2

𝑥2
′ = 3𝑥1 + 𝑥2

                                          

Since the value of 𝑥2 is dependent on 𝑥1, and the value of 𝑥1 is dependent on 

𝑥2, this system is known as a coupled system.  
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A system of linear differential equations is a set of linear equations relating a 

group of functions to their derivatives. Since these equations include the 

function and its derivatives, each of these linear equations is differential 

equation in of itself. For example: 

𝑓′(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)                                      

This equation relates 𝑓′ to 𝑓 and 𝑔. Therefore, it is linear while the equation 

𝑓′ = 𝑓𝑔 is not linear because the term 𝑓𝑔 isn’t linear. To summarize this, 

the linearity of the system of differential equation depends on the linearity of 

its equations. Systems of differential equations can be used to model a 

variety of physical systems but linear systems are the only systems that can 

be consistently solved explicitly. 

1.5 System of differential equations solution method 

Solving a system of differential equations usually entail converting it to 

matrix form first before solving it. To help show this method of 

convergence, take the following example: 

𝑥1
′ = 4𝑥1 + 7𝑥2

𝑥2
′ = −2𝑥1 − 5𝑥2

 

To convert this system into a matrix, the first step is to write this system in 

way that each side becomes a vector, as shown in the following expression: 

(
𝑥1

′

𝑥2
′ ) = (

4𝑥1 + 7𝑥2

−2𝑥1 − 5𝑥2
)                                  

The next step is to rewrite the right side as a matrix multiplication: 

(
𝑥1

′

𝑥2
′ ) = (

4 7
−2 −5

) (
𝑥1

𝑥2
)                               
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By defining 𝑥⃗ as: 

𝑥⃗ = (
𝑥1

𝑥2
)                                                     

and 𝑥⃗′ as: 

𝑥⃗′ = (
𝑥1

′

𝑥2
′ )                                                   

The system takes the following matrix form: 

𝑥⃗′ = (
4 7

−2 −5
) 𝑥⃗                                      

The general form of the matrix takes the following form: 

𝑥⃗′ = 𝐴𝑥⃗ + 𝑔⃗(𝑡)                                         (1.46) 

where A is an 𝑛 × 𝑛 matrix and 𝑥⃗ is a vector whose components are the 

unknown functions in the system. The system is considered homogeneous 

should 𝑔⃗(𝑡) = 0. Otherwise, it is considered non-homogenous. Now, the 

method of converting a system to a matrix is covered, the next step is to 

show how to solve the equation; to show this, consider the following 

homogeneous system of differential equations written in matrix form: 

𝑥⃗′ = 𝐴𝑥⃗                                                     (1.47) 

By starting at 𝑛 = 1, the system is reduced to a simple linear or separable 

first order differential equation: 

𝑥′ = 𝑎𝑥                                                    (1.48) 

Which has the following solution: 
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𝑥(𝑡) = 𝑐𝑒𝑎𝑡                                               (1.49) 

By using this solution as a guide, we will attempt to develop a solution for a 

general 𝑛 to see if the following equation will be the solution: 

𝑥⃗(𝑡) = 𝜂𝑒𝑟𝑡                                              (1.50) 

It should be noted that the only real difference is the constant in front of the 

exponential is set as a vector. All that is left to do is to “plug” this into the 

differential equation and observe its result. First notice that the derivative is 

given as: 

𝑥⃗′(𝑡) = 𝑟𝜂𝑒𝑟𝑡                                           (1.51) 

By plugging the previous guess into the differential equation it becomes: 

𝑟𝜂𝑒𝑟𝑡 = 𝐴𝜂𝑒𝑟𝑡                                          

(𝐴𝜂 − 𝑟𝜂)𝑒𝑟𝑡 = 0⃗⃗                                     

(𝐴 − 𝑟𝐼)𝜂⃗𝑒𝑟𝑡 = 0⃗⃗                                     (1.52) 

Since the exponentials are not zero and by dropping that portion, it is clear 

that for equation (1.50) to be a solution of equation (1.47), the following 

equation must be true: 

(𝐴 − 𝑟𝐼)𝜂⃗ = 0                                          (1.53) 

or that 𝑟 and 𝜂 must be eigenvalue and eigenvector for the matrix A. 

Therefore, to solve equation (1.47), the eigenvalue and eigenvector of the 

matrix A must be found and then a solution can be formed using equation 

(1.50). There are three possible cases that the eigenvalue can be, which are 

real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues. 
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However, these on their own do not show how to solve a system of 

differential equation, the following facts are needed to do this: 

1. If 𝑥⃗1(𝑡) and 𝑥⃗2(𝑡) are two solutions to a homogeneous system, then: 

𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡)  is also considered a solution to the system. 

2. Suppose that A is an 𝑛 × 𝑛 matrix and 𝑥⃗1(𝑡), 𝑥⃗2(𝑡), … , 𝑥⃗𝑛(𝑡) are 

solutions to a homogeneous system. In other words, X  is a matrix with 

an ith solution. 

Now define , 𝑊 = det(𝑋) , 𝑊 is called the Wronskian. If 𝑊 ≠ 0, then 

the solution form a fundamental set of solutions and the general solution 

to the system is: 

𝑥⃗(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡) + ⋯ + 𝑐𝑛𝑥⃗𝑛(𝑡)               (1.54) 

It should be noted that if a fundamental set of solutions is obtained, the 

solutions are also going to be linearly independent. Similarly, if we have a 

set of linearly independent solutions, then they will also be a fundamental set 

of solutions since the Wronskian will not be zero. 

1.6 System of non-linear differential equations 

Equilibrium is a state of a system which does not change. 

Definition 1.5  

An equilibrium point (fixed point) is  a steady state, that is a rest state, of 

system.  When a system is found at an equilibrium point at some time t0 then 

it will remain in it for 𝑡> 𝑡0. 

A system of differential equations is considered non-linear if it cannot be 

written in the form of 𝑥0 = 𝐴𝑥 for a matrix A. systems of non-linear 

differential equations cannot be solved using the methods of linear 
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differential equation systems, new methods are needed to discern the nature 

of the equilibria in non-linear systems in order to linearize the system. For 

an example take the following equations: 

𝑥′ = 𝑥 + (
𝛼

𝛽
)                                                  (1.55) 

This system has an equilibrium point (
−𝛼

−𝛽
). By introducing a change in 

coordinates 𝑥̅1 = 𝑥1 + 𝛼, 𝑥̅2 = 𝑥2 + 𝛽 so that the system becomes: 

𝑥̅′ = 𝑥̅ + (
𝛼

𝛽
) = 𝑥 − (

𝛼

𝛽
) + (

𝛼

𝛽
) = 𝑥                (1.56)  

This new system 𝑥̅′ = 𝑥̅ is linear with a unique equilibrium point at (0,0). 

Moreover, 𝑥̅′ = 𝑥′ for any 𝑥 ∈ ℝ2, since 𝑥̅′ = (𝑥 − (
𝛼

𝛽
))

′

= 𝑥′. 

Proposition 1.1 

For any system of n-dimensional differential equations of the form 𝑥′ =

 𝐴𝑥 +  𝑉 for some 𝑉 ∈ ℝ𝑛 and with unique equilibrium point 𝑥𝑒, then the 

change of coordinates 𝑥̅ = 𝑥 − 𝑥 yields a linear system of differential 

equations  𝑥̅′ = 𝐴𝑥̅ with unique equilibrium point 0. 

 Proof: 

 Since 𝑥𝑒 is an equilibrium point of the system, 𝐴𝑥𝑒  +  𝑉 =  0. 

Then, 𝑥̅′ = 𝐴(𝑥̅ + 𝑥𝑒) + 𝑉 = 𝐴𝑥̅ + (𝐴𝑥𝑒 + 𝑉) = 𝐴𝑥̅. 

Then, we have from the previous example that 𝑥̅′ = 𝑥′ for any 𝑥 ∈ ℝ2, as 

our proof in ℝ2 did not require any specific characteristics of ℝ2.  
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Therefore, 0 = 𝑥𝑒
′ = (𝑥𝑒 −  𝑥𝑒)′ = 0̅, 𝑖. 𝑒.  𝑥̅ = 𝐴𝑥̅ has equilibrium point 0. 

Since 𝑥𝑒 is a unique equilibrium point, 0 is the only element of ℝ𝑛 with     

𝑥̅ = 0.  

More generally, we have the notion of conjugacy. 

Definition 1.6 

Let 𝐹 : 𝑋 → 𝑋, 𝐺 : Y→Y, 𝐹 and 𝐺 are topologically conjygate if there exists 

a homeomorphism ℎ : X→Y such that ℎ0𝐹 = 𝐺0ℎ. 

That is, two systems are conjugate if there exists a "change of coordinates" 

from one system to the other. 

In studying nonlinear systems, we are notably interested in systems which 

are conjugate to linear systems. However, most nonlinear systems are not 

conjugate to linear equations. Most nonlinear systems, in fact, cannot be 

solved to arrive at a general equation. For example, consider the following 

system: 

𝑥′ = 𝑥 − 3𝑦 + 𝑥3

𝑦′ = −𝑥 + 𝑦 − 2𝑦4                                        

This system cannot be solved explicitly, but the nature of the equilibrium 

point (0,0) can be discerned. Since it is known that 𝑥, 𝑦, 𝑥3 and 2𝑦4 tend to 0 

much faster than the linear terms. Therefore, sufficiently close to (0,0), the 

system behaves similarly to: 

𝑥′ = 𝑥 − 3𝑦

𝑦′ = −𝑥 + 𝑦
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The linear system has eigenvalues 𝜆 = 1 ± 𝑖√3, meaning the equilibrium 

point is a spiral source. Therefore, in the nonlinear system, we know at least 

that the equilibrium point is a source.  

 

 



 

Chapter Two  

Adomian decomposition method 
 

2.1 Adomian decomposition method principle 

2.2 Adomian polynomials 

2.3 Convergence analysis of the (ADM) method 

2.4 Convergence order of (ADM) method 

2.5 Formulation of Adomian polynomials for nonlinear cases 

2.6 Boundary conditions 

2.7 Applications of the (ADM) method 

2.8 Advantages and Disadvantages of the (ADM) method 

 



Chapter two                       Adomian decomposition method 

 24 

2.1 Adomian decomposition method principle  

In order to show the ADM’s principle, consider the following nonlinear 

ordinary differential equation (ODE): 

𝐿𝑢 + 𝑁𝑢 + 𝑅𝑢 = 𝑔                                         (2.1) 

where 𝑢 is the unknown function, 𝐿 is the linear differential operator of high 

order which is easily invertible, 𝑁 is the nonlinear operator, 𝑅 is the 

remaining linear part, 𝑔 is the given function (source).  

Multiply  the inverse of the linear differential operator 𝐿 which is (𝐿-1) of 

both sides of the equation, which results in the following expression: 

𝐿−1(𝐿𝑢 + 𝑁𝑢 + 𝑅𝑢 = 𝑔)                                (2.2) 

It should be mentioned that the choice of 𝐿 and consequently 𝐿−1 are 

determined by the particular equation that is to be solved i.e. the choice of 𝐿 

and 𝐿−1  is non-unique. By multiplying 𝐿−1  into the brackets we gain the 

following equation: 

𝐿−1𝐿𝑢 = 𝐿−1𝑔 − 𝐿−1𝑁(𝑢) − 𝐿−1𝑅(𝑢)            (2.3) 

This yields the following equation: 

𝑢 − 𝜙 = 𝐿−1𝑔 − 𝐿−1𝑁(𝑢) − 𝐿−1𝑅(𝑢)           (2.4) 

where 𝜙 is presented from the initial conditions or from the boundary 

conditions or both, it depends on how we choose differential operator that 

solve the given problem. 

In the (ADM) method, it is assumed that the solution (𝑢) of the functional 

equation can be decomposed into infinite series as follows: 
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𝑢 = ∑ 𝑢𝑛
∞
𝑛=0                                                      (2.5)  

The (ADM) method also assumes that the nonlinear term 𝑁(𝑢) can be written 

as an infinite series as follows: 

𝑁(𝑢) = ∑ 𝐴𝑛
∞
𝑛=0                                               (2.6)  

where the 𝐴𝑛’s are the Adomian polynomials, which as mentioned before is 

the cornerstone of the Adomian method. The method of obtaining the 

Adomian polynomials will be explained in the following section. By 

substituting both series into equation (2.4), we get, 

∑ 𝑢𝑛
∞
𝑛=0 = 𝜙 + 𝐿−1𝑔 − 𝐿−1 ∑ 𝐴𝑛

∞
𝑛=0 − 𝐿−1 ∑ 𝑅(𝑢𝑛)∞

𝑛=0                 (2.7) 

From the previous equation the following algorithm can be obtained: 

𝑢0 = 𝜙 + 𝐿−1𝑔,    𝑢𝑛+1 = −𝐿−1(𝐴𝑛 + 𝑅𝑢𝑛),       𝑛 = 0, 1, 2, …         (2.8) 

By obtaining 𝑢0, the other terms of 𝑢 can be determined respectively. It 

should be mentioned that if any values of 𝑢𝑛 equals to zero then all the terms 

come after are zero as well.  

2.2 Adomian polynomials 

As mentioned before, the Adomian decomposition method relies heavily on 

Adomian polynomials (𝐴𝑛). These polynomials are determined via a general 

formula that was given by George Adomian in 1992, this formula is 

expressed as: 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛 [𝑁(∑ 𝜆𝑖𝑢𝑖
𝑛
𝑖=0 )]

𝜆=0
,         𝑛 = 0,1,2,3 …                 (2.9) 

Using formula (2.9), the three first terms of the Adomian polynomials can be 

determined and expressed as follows: 
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𝐴0 =
1

0!

𝑑0

𝑑𝜆0 [𝑁( ∑ 𝜆𝑖𝑢𝑖
0
𝑖=0 )]

𝜆=0
= 𝑁(𝑢0)                              (2.10) 

𝐴1 =
1

1!

𝑑1

𝑑𝜆1 [𝑁( ∑ 𝜆𝑖𝑢𝑖
1
𝑖=0 )]

𝜆=0
=

𝑑

𝑑𝜆
[𝑁(𝜆0𝑢0 + 𝜆1𝑢1)]𝜆=0 = [𝑁′(𝜆0𝑢0 +

𝜆1𝑢1)]𝜆=0(𝑢1) = 𝑢1𝑁′(𝑢0)                                            (2.11) 

𝐴2 =
1

2!

𝑑2

𝑑𝜆2 [𝑁( ∑ 𝜆𝑖𝑢𝑖
2
𝑖=0 )]

𝜆=0
=

1

2!

𝑑2

𝑑𝜆2
[𝑁(𝜆0𝑢0 + 𝜆1𝑢1 + 𝜆2𝑢2)]𝜆=0 =

1

2!

𝑑

𝑑𝜆
[𝑁′(𝜆0𝑢0 + 𝜆1𝑢1 + 𝜆2𝑢2)(𝑢1 + 2𝜆𝑢2)]𝜆=0 =

1

2!
[𝑁′(𝜆0𝑢0 +

𝜆1𝑢1 + 𝜆2𝑢2)(2𝑢2) + 𝑁′′(𝜆0𝑢0 + 𝜆1𝑢1 + 𝜆2𝑢2)(𝑢1 + 2𝜆𝑢2)2]𝜆=0  =

𝑢1
2

2!
𝑁′′(𝑢0) + 𝑢2𝑁′(𝑢0)                                                                  (2.12) 

In the (ADM) method, the nonlinear function 𝑁(𝑢) found around initial 

function 𝑢0, can be obtained in a similar fashion to the Traylor series 

expansion, as shown below: 

𝑁(𝑢) = 𝑁(𝑢0) + 𝑁′(𝑢0)(𝑢 − 𝑢0) +
1

2!
𝑁′′(𝑢0)(𝑢 − 𝑢0)2 + ⋯          (2.13) 

In the ADM method, 𝑢 can be expressed as: 

𝑢 = ∑ 𝑢𝑛
∞
𝑛=0 = 𝑢0 + 𝑢1 + 𝑢2 + ⋯                               (2.14) 

By substituting equation (2.14) into expansion (2.13), the following 

expression is obtained: 

𝑁(𝑢) = 𝑁(𝑢0) + 𝑁′(𝑢0)(𝑢1 + 𝑢2 + ⋯ ) +
1

2!
𝑁′′(𝑢0)(𝑢1 + 𝑢2 + ⋯ )2 +

1

3!
𝑁′′′(𝑢0)(𝑢1 + 𝑢2 + ⋯ )3 + ⋯                                   (2.15) 

By taking apart the expansion terms, the previous expansion becomes: 
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𝑁(𝑢) = 𝑁(𝑢0) + 𝑁′(𝑢0)(𝑢1) + 𝑁′(𝑢0)(𝑢2) + 𝑁′(𝑢0)(𝑢3) + ⋯ +
1

2!
𝑁′′(𝑢0)(𝑢1)2 +

1

2!
𝑁′′(𝑢𝑜)𝑢1𝑢2 +

1

2!
𝑁′′(𝑢0)𝑢2𝑢1 +

1

2!
𝑁′′(𝑢0)(𝑢2)2 +

1

2!
𝑁′′(𝑢0)𝑢1𝑢3 +

1

2!
𝑁′′(𝑢0)𝑢3𝑢1 + ⋯ +

1

3!
𝑁′′′′(𝑢0)(𝑢1)3 +

1

3!
𝑁′′′(𝑢0)(𝑢1)2𝑢2 +

1

3!
𝑁′′′(𝑢0)𝑢2(𝑢1)2 +

1

3!
𝑁′′′(𝑢0)𝑢1𝑢2𝑢1 + ⋯                               (2.16) 

By recording the terms and determining the order of each term which depend 

on both the subscript and the exponent of the 𝑢𝑛’s. This results into the 

following expression: 

𝑁(𝑢) = 𝑁(𝑢0) + 𝑁′(𝑢0)𝑢1 + 𝑁′(𝑢0)𝑢2 +
1

2!
𝑁′′(𝑢0)𝑢1

2 + 𝑁′(𝑢0)𝑢3

+
2

2!
𝑁′′(𝑢0)𝑢1𝑢2 +

1

3!
𝑁′′′(𝑢0)𝑢1

3 + 𝑁′(𝑢0)𝑢4 +
1

2!
𝑁′′(𝑢0)𝑢2

2

+
2

2!
𝑁′′(𝑢0)𝑢1𝑢3 +

3

3!
𝑁′′′(𝑢0)𝑢1

2𝑢2 + ⋯                         (2.17) 

By comparing the terms from equation (2.17) with the terms of the 

assumption made in equation (2.6), the values of 𝐴𝑛’s can be written as 

follows: 

𝐴0 = 𝑁(𝑢0) 

𝐴1 = 𝑢1𝑁′(𝑢0) 

𝐴2 = 𝑢2𝑁′(𝑢0) +
𝑢1

2

2!
𝑁′′(𝑢0) 

𝐴3 = 𝑢3𝑁′(𝑢0) +
2𝑢1𝑢2

2!
𝑁′′(𝑢0) +

𝑢1
3

3!
𝑁′′′(𝑢0) 

… 
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It is clear that, these are the same values gained from the Adomian general 

formula that is used to determine the Adomian polynomials, as shown in 

equation (2.9).  

2.3 Convergence analysis of the (ADM) method 

The proof of convergence for the Adomian method was first provided by 

Cherruault [13] [14], where he used fixed point theorems for abstract 

functional equations. To show the convergence of the (ADM) method 

consider this general functional equation: 

𝑢 − 𝑁(𝑢) = 𝑓,         for 𝑢 ∈ 𝐻                    (2.18) 

where 𝐻 is the Hilbert space and 𝑁: 𝐻 → 𝐻 and f is any given function in 𝐻. 

As aforementioned, the Adomian decomposition method assumes a series 

solution for 𝑢 given by equation (2.5), while the nonlinear term 𝑁(𝑢) is 

given as the sum of series as shown in equation (2.6) and the Adomian 

polynomials are given by equation (2.9). By substituting equations (2.5) and 

(2.6) into equation (2.18) the following expression is obtained: 

∑ 𝑢𝑛
∞
𝑛=0 − ∑ 𝐴𝑛

∞
𝑛=0 = 𝑓                            (2.19) 

The recursive terms are obtained from the following algorithm: 

𝑢0 = 𝑓
𝑢𝑛+1 = 𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛)

                      (2.20) 

The Adomian decomposition method uses an iterative scheme which is 

equivalent to finding the sequence 𝑆𝑛 = 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑛, which is 

defined by: 

𝑆0 = 0,

𝑆𝑛+1 = 𝑁𝑛(𝑢0 + 𝑠𝑛),
                               (2.21) 
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where  

𝑁𝑛(𝑢0 + 𝑠𝑛) = ∑ 𝐴𝑖
𝑖
𝑛=0                         (2.22) 

If the following limits exist in a Hilbert space (𝐻): 

𝑆 = lim
𝑛→∞

𝑆𝑛 ,      𝑁 = lim
𝑛→∞

𝑁𝑛         (2.23)        

Then, 𝑆 solves the functional equation 𝑆 = 𝑁(𝑢0 + 𝑆) in 𝐻. 

The following theorem shows proof of the ADM method’s convergence: 

Theorem 2.1 

Let N be a nonlinear operator from a Hilbert space 𝐻 where: 𝑁: 𝐻 → 𝐻 and 

u be the exact solution of equation (2.18). The decomposition series ∑ 𝑢𝑛
∞
𝑛=0  

of u convergence to u when: 

∃𝛼 < 1, ‖𝑢𝑛+1‖ ≤ 𝛼‖𝑢𝑛‖, ∀𝑛 ∈ ℕ ∪ {0} 

Proof  

We have the sequence 

𝑆𝑛 = 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑛                                          (2.24) 

It is necessary to show that the previous sequence is a Cauchy sequence in 

the Hilbert space (𝐻). To achieve this let: 

‖𝑆𝑛+1 − 𝑆𝑛‖ = ‖𝑢𝑛+1‖ ≤ 𝛼‖𝑢𝑛‖ ≤ 𝛼2‖𝑢𝑛−1‖ ≤ ⋯ ≤ 𝛼𝑛+1‖𝑢0‖       (2.25) 

Since 

‖𝑆𝑚 − 𝑆𝑛‖ = ‖(𝑆𝑚 − 𝑆𝑚−1) + (𝑆𝑚−1 − 𝑆𝑚−2) + ⋯ + (𝑆𝑛+1 − 𝑆𝑛)‖ 

 ≤ ‖𝑆𝑚 − 𝑆𝑚−1‖ + ‖𝑆𝑚−1 − 𝑆𝑚−2‖ + ⋯ + ‖𝑆𝑛+1 + 𝑆𝑛‖ 

≤ 𝛼𝑚‖𝑢0‖ + 𝛼𝑚−1‖𝑢0‖ + ⋯ + 𝛼𝑛+1‖𝑢0‖ 
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= (𝛼𝑚 + 𝛼𝑚−1 + ⋯ + 𝛼𝑛+1‖𝑢0‖) 

  ≤ (𝛼𝑛+1 + 𝛼𝑛+2 + ⋯ )‖𝑢0‖   

Then  

‖𝑆𝑚 − 𝑆𝑛‖    =
𝛼𝑛+1

1−𝛼
‖𝑢0‖,    𝑓𝑜𝑟 𝑛, 𝑚 ∈ ℕ, 𝑚 ≥ 𝑛     (2.26) 

Thus Sm converges to Sn and  

𝑙𝑖𝑚
𝑛,𝑚→∞

‖𝑆𝑚 − 𝑆𝑛‖ = 0                            (2.27) 

From the equation (2.27), the sequence {𝑆𝑛}𝑛=0
∞  is a Cauchy sequence in the 

Hilbert space (𝐻). Hence, 

𝑙𝑖𝑚
𝑛→∞

𝑆𝑛 = 𝑆          for 𝑆 ∈ 𝐻,                 (2.28)          

where  

𝑆 = ∑ 𝑢𝑛

∞

𝑛=0
 

Solving equation (2.18) is the same as solving the functional 𝑁(𝑢0 + 𝑆); by 

assuming that 𝑁 is a continouse operator, we get: 

𝑁(𝑢0 + 𝑆) = 𝑁 ( 𝑙𝑖𝑚
𝑛→∞

(𝑢0 + 𝑆𝑛)) = 𝑙𝑖𝑚
𝑛→∞

𝑁(𝑢0 + 𝑆𝑛) 

                                              = 𝑙𝑖𝑚
𝑛→∞

𝑆𝑛+1 = 𝑆                                          (2.29) 

Therefore, the solution of equation (2.18) is 𝑆. 

2.4 Convergence order of (ADM) method 

The convergence order of the (ADM) method was defined by Babolian and 

Biazer [11] as: 
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Definition 2.2  

Let 𝑆n be a sequence that converges to 𝑆. If there exist two constants 𝑝 ∈ ℕ,

𝑐 ∈  ℝ , such that: 

                       lim
𝑛→∞

|
𝑆𝑛+1−𝑆 

(𝑆𝑛−𝑆)𝑝
| = 𝑐                                                         (2.30) 

Then the order of convergence of 𝑆𝑛 is 𝑝. 

To determine the order of convergence of 𝑆𝑛, the Taylor expansion of 

𝑁(𝑆𝑛 + 𝑢0) around the point (𝑆 + 𝑢0) can be considered: 

𝑁(𝑆𝑛 + 𝑢0) = 𝑁(𝑆 + 𝑢0) + 𝑁′(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆) +
1

2!
𝑁′′(𝑆 + 𝑢0) (𝑆𝑛 − 𝑆)2 + ⋯ 

+
1

𝑚!
𝑁(𝑚)(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆)𝑚 + ⋯ 

𝑁(𝑆𝑛 + 𝑢0) − 𝑁(𝑆 + 𝑢0) = 𝑁′(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆) +
1

2!
𝑁′′(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆)2 + ⋯ 

                                     +
1

𝑚!
𝑁(𝑚)(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆)𝑚 + ⋯                             (2.31)                                   

Since 𝑁(𝑆 + 𝑢0)  =  𝑆 and 𝑁(𝑆𝑛 + 𝑢0) =  𝑆𝑛+1, Therefore, the previous 

equation becomes: 

𝑆𝑛+1 − 𝑆 = 𝑁′(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆) +
1

2!
𝑁′′(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆)2 + ⋯ +

1

𝑚!
𝑁(𝑚)(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆)𝑚 + ⋯                                                           

(2.32) 

Theorem  2.3 [11] 

Suppose 𝑁 ∈ 𝐶𝑝[𝑎. 𝑏], if 𝑁(𝑚)(𝑠 + 𝑢0) = 0 for m=0, 1, 2, …, p-1 and 

𝑁(𝑝)(𝑆 + 𝑢0) ≠ 0, then the sequence Sn is of order p. 
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Proof 

By the hypothesis of theorem (2.3), from equation (2.32), we have: 

𝑆𝑛+1 − 𝑆 =
1

𝑝!
𝑁(𝑝)(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆)𝑝 +

1

𝑝+1!
𝑁(𝑝+1)(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆)𝑃+1 + ⋯  (2.33) 

By dividing both sides of equation (2.33) by (Sn-S) we get: 

𝑆𝑛+1−𝑆

(𝑆𝑛−𝑆)𝑝
=

1

𝑝!
𝑁(𝑝)(𝑆 + 𝑢0) +

1

𝑝+1!
𝑁(𝑝+1)(𝑆 + 𝑢0)(𝑆𝑛 − 𝑆) + ⋯                  

(2.34) 

Then we take the limit as n→∞ to both sides of equation (2.34): 

𝑙𝑖𝑚
𝑛→∞

|
𝑆𝑛+1−𝑆

(𝑆𝑛−𝑆)𝑝
| = 𝑙𝑖𝑚

𝑛→∞

1

𝑝!
𝑁(𝑝)(𝑆 + 𝑢0) + 𝑙𝑖𝑚

𝑛→∞

1

𝑝+1!
𝑁(𝑝+1)(𝑆 +

𝑢0)(𝑆𝑛 − 𝑆) + ⋯                                                                  (2.35) 

Since 𝑙𝑖𝑚
𝑛→∞

(𝑆𝑛) = 𝑆 then every terms that has (Sn-S) will be canceled so at the 

end we have: 

𝑙𝑖𝑚
𝑛→∞

|
𝑆𝑛+1−𝑆

(𝑆𝑛−𝑆)𝑝
| = 𝑙𝑖𝑚

𝑛→∞

1

𝑝!
𝑁(𝑝)(𝑆 + 𝑢0) = 𝑐                   (2.36) 

So by the previous definition the order of the sequence is p. 

2.5 Formulation of Adomian polynomials for nonlinear cases 

There are numerous cases of non-linear terms that the Adomian 

decomposition method may need to decompose and solve. The following 

cases show examples of non-linear terms decomposed by the Adomian 

decomposition method. 
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2.5.1 Polynomial non-linearities 

The Adomian polynomials are easily given for the nonlinear term 𝑥𝑖
𝑛 in 

equation (2.9). As for other nonlinear terms such as sin 𝑥3, the first Adomian 

polynomials are formulated as: 

𝐴0 = 𝑠𝑖𝑛𝑥30 

𝐴1 = 𝑥31 cos(𝑥30) 

𝐴2 =
1

2!
𝑥31

2 sin(𝑥30) + 𝑥32 cos(𝑥30) 

𝐴3 =
1

3!
𝑥31

3 Cos(𝑥30) + 𝑥32𝑥31 sin(𝑥30) + 𝑥33 cos(𝑥30) 

To further show this, another non-linear term is chosen which is 𝑒−𝑥10𝑥20. 

The first Adomian polynomials for this term are formulated as follows: 

𝐴0 = 𝑒−𝑥10𝑥20 

𝐴1 = −(𝑥20𝑥11 + 𝑥21𝑥13)𝑒−𝑥10𝑥20 

𝐴2 = (
1

2!
𝑥11

2 𝑥20
2 +

1

2!
𝑥21

2 𝑥10
2 − 𝑥11𝑥21 + 𝑥11𝑥21𝑥10𝑥20 − 𝑥21𝑥20 − 𝑥22𝑥10) 𝑒−𝑥10𝑥20 

𝐴3 = (
1

3!
𝑥11

3 𝑥20
3 −

1

3!
𝑥21

3 𝑥10
3 + 𝑥11

2 𝑥21𝑥20 −
1

2!
𝑥11

2 𝑥21𝑥10𝑥20𝑥20
2

− 𝑥13𝑥20 − 𝑥23𝑥10 − 𝑥21𝑥12𝑥21𝑥12𝑥10𝑥20 − 𝑥11𝑥22

+ 𝑥22𝑥10
2 𝑥21 + 𝑥11𝑥22𝑥10𝑥20𝑥11𝑥12𝑥20

2 ) 𝑒−𝑥10𝑥20 
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2.5.2 Negative power non-linearities 

When solving a negative power non-linear term i.e. a differential equation 

involving the term 𝑦−𝑚, where m is any positive integer. First five Adomian 

polynomials gained through the decomposition method are given as follows: 

𝐴0 = 𝑦0
−𝑚 

𝐴1 = −𝑚𝑦0
−(𝑚+1)

𝑦1 

𝐴2 =
1

2!
𝑚(𝑚 + 1)𝑦0

−(𝑚+2)
𝑦1

2 − 𝑚𝑦0
−(𝑚+1)

𝑦2 

𝐴3 = −
1

3!
𝑚(𝑚 + 1)(𝑚 + 2)𝑦0

−(𝑚+3)
𝑦1

3 + 𝑚(𝑚 + 1)𝑦0
−(𝑚+2)

𝑦1𝑦2 − 𝑚𝑦0
−(𝑚+1)

𝑦3 

𝐴4 = −
1

4!
(−3 − 𝑚)(−2 − 𝑚)(−1 − 𝑚)𝑚𝑦0

−4−𝑚𝑦1
4

−
1

2!
(−2 − 𝑚)(−1 − 𝑚)𝑚𝑦0

−3−𝑚𝑦1
2𝑦2 −

1

2!
(−1 − 𝑚)𝑚𝑦0

−2−𝑚𝑦2
2

− 24(−1 − 𝑚)𝑚𝑦0
−2−𝑚𝑦1𝑦3 − 𝑚𝑦0

−1−𝑚𝑦4 

𝐴5 = −
1

5!
(−4 − 𝑚)(−3 − 𝑚)(−2 − 𝑚)(−1 − 𝑚)𝑚𝑦0

−5−𝑚𝑦1
5

−
1

3!
(−3 − 𝑚)(−2 − 𝑚)(−1 − 𝑚)𝑚𝑦0

−4−𝑚𝑦1
3𝑦2

−
1

2!
(−2 − 𝑚)(−1 − 𝑚)𝑚𝑦0

−3−𝑚𝑦2𝑦2
2

−
1

2!
(−2 − 𝑚)(−1 − 𝑚)𝑚𝑦0

−3−𝑚𝑦1
2𝑦3 − (−1 − 𝑚)𝑚𝑦0

−2−𝑚𝑦2𝑦3

− (1 − 𝑚)𝑚𝑦0
−2−𝑚𝑦1𝑦4 − 𝑚𝑦𝑜

−1−𝑚𝑦5 
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2.5.3 Decimal power non-linearities  

Another form on non-linear terms are decimal power terms i.e. terms with 

𝑥
1

𝑚, where m is any integer. The first few Adomian polynomials for a decimal 

power non-linear term 𝑦
1

3 are formulated as follows: 

𝐴0 = 𝑦0
1/3

 

𝐴1 =
𝑦1

3
𝑦0

2/3
 

𝐴2 =
1

2!
(−

2

9

𝑦1
2

𝑦0
5/3

+
𝑦2

𝑦0
3/2

) 

𝐴3 =
1

3!
(

10

27

𝑦1
3

𝑦0
8/3

−
4

3

𝑦1𝑦2

𝑦0
5/3

+ 2
𝑦3

𝑦0
2/3

)  

𝐴4 =
1

4!
(

80

81

𝑦1
4

𝑦0
11/3

−
40

9

𝑦1
2𝑦2

𝑦0
8/3

−
8

3

𝑦2
2

𝑦0
2/3

−
16

3

𝑦1𝑦2

𝑦0
5/3

+ 8
𝑦4

𝑦0
2/3

)  

𝐴5 =
1

5!
(

880

243

𝑦1
5

𝑦0
14/3

−
1600

81

𝑦1
3𝑦2

𝑦0
11/3

−
200

9

𝑦1𝑦2
2

𝑦0
8/3

+
200

9

𝑦1
2𝑦3

𝑦0
8/3

−
80

3

𝑦2𝑦3

𝑦0
5/3

 

−
80

3

𝑦1𝑦4

𝑦0
5/3

+ 40
𝑦5

𝑦0
2/3

) 

2.6 Boundary conditions 

For boundary value problem, the integration constants require evaluation for 

the Adomian decomposition method. For the Adomian decomposition 

method, there are three approaches for implementing the boundary 

conditions: 
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1. The zeroth order intake all boundary conditions, while other orders have 

homogeneous boundary conditions.  

2. Obtain the solution to the desired order and then evaluate the constants. 

3. Evaluate the constants at every order. 

While the first approach is the easiest to implement, it is generally not 

recommended due to the nature of the decomposition. Since the method 

chooses to attach boundary conditions to the base solution, this method will 

behave as a regular perturbation thus hindering its ability of capture the 

essential features of the problem without a small parameter. As for the second 

approach, while it seems to be a valid alternative, it only works only for 

linear operators. For non-linear operators, the constants would need to be 

determined by solving a polynomial of order n. To do this, a numerical 

technique that outweighs the benefits of an analytical model is needed. 

Finally, the only option left is the option that demands the evaluation of the 

integration constants at every order of the solution. The boundary conditions 

implemented by this approach are implemented with a relatively easy 

framework, however, it consists of several evaluations at each order. 

2.7 Applications of the (ADM) method 

There are a wide range of equations that can be solved by Adomian 

decomposition method, this includes algebraic equations, ordinary and partial 

differential equations, integral equations, and integral differential equations. 

As for its applications, the (ADM) method has received extensive 

applications in multiple fields and their disciplines, e.g. physics, engineering, 

chemistry, chaos theory, heat and mass transfer, etc…. In the field of fluid 

mechanics, there are several problems that utilize the (ADM) method. 

Examples of these studies include Bulut et al.’s study [13] that used the 
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(ADM) method to solve the governing Navier-Stokes equations of “a steady 

flow problem of a viscous incompressible fluid through an orifice” 

analytically. Results of the study show that (ADM) method results are 

reliable and practical method and require less computational work when 

compared to results of a numerical solution. Another study conducted by 

Momani and Odibat also applied the (ADM) method to “a time-fractional 

Navier-Stokes equation” for “unsteady flow of a viscous fluid in a tube” [21]. 

The study concluded that since the time-fractional Navier-Stokes equations 

are non-linear, a known general method to solve these equations doesn’t exist 

and an exact solution can only be obtained for a very limited number of 

cases. The study also shows that the (ADM) method allows for the 

construction of an analytic solution in the form of a series through a reliable 

technique that requires less work than the traditional methods used. The study 

finally concluded that the solution depended continuously on the time 

fractional derivative. A more recent study conducted by Wang used the 

(ADM) method to the classical Blasius equation [23]. Using this method, 

Wang was able to easily provide an analytical solution to this classical 

problem. However, the value of the parameter 𝑦′′(0) was impossible to 

determine with this solution. To overcome this, the problem was transformed 

into a singular nonlinear boundary value problem and the (ADM) method 

was applied to it. By using this method the parameter 𝑦′′(0) was obtained 

easily as well as a 5-term approximate solution comparable to the numerical 

solution. This study provided further proof of the (ADM) method ability to 

provide reliable solutions. As a finale example to the application of (ADM) 

method, a study by Al-Hayani and Casu ́s will be used. In their study, the 

(ADM) method was applied to first order initial value problems with 

Heaviside functions and other discontinuities [9]. The analysis worked well 
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with the (ADM) method and multiple findings were reached. This includes 

that the size of the jump had virtually no effect on the method convergence 

and that some cases needed more digits included to avoid any unstable 

oscillation. At the end, Al-Hayani and Casu ́s both concluded that the error 

could be reduced by modifying the (ADM) method slightly to include the 

term associated with the inverse operator applied to the source function in the 

first Adomian polynomial instead of the initial term in the series solution. 

2.8 Advantages and Disadvantages of the (ADM) method 

The reason for the multiple application of (ADM) method can be credited to 

its many advantages. The (ADM) method’s main advantage would be its 

requirement of less computational work than traditional methods, as shown 

by multiple studies [18] [23] [24]. The method’s ability to solve nonlinear 

problems without linearization is another advantage that elevates the (ADM) 

method in the eyes of many researchers. Wang mentioned in his study 

mentioned earlier that the (ADM) method can handle nonlinearities which are 

“quite general” and generates solutions that are more realistic than solutions 

achieved via model simplification that are required by other techniques. A 

study by Wazwaz states that “The main advantage of the method is that it can 

be applied directly for all types of differential and integral equations, linear or 

nonlinear, homogeneous or inhomogeneous, with constant coefficients or 

with variable coefficients [24]. Another important advantage is that the 

method is capable of greatly reducing the size of computational work while 

still maintaining high accuracy of the numerical solution.” A study by Jiao et 

al. clearly states that the “ADM is quantitative rather than qualitative, 

analytic, requiring neither linearization nor perturbation, and continuous with 

no resort to discretization and consequent computer-intensive calculations” 
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[20]. Another advantage would be the method’s ability to develop a reliable 

analytical solution. Jiao et al also states some of the disadvantages of the 

ADM method by stating: “although the series can be rapidly convergent in a 

very small region, it has very slow convergence rate in the wider region and 

the truncated series solution is an inaccurate solution in that region, which 

will greatly restrict the application area of the method.”. This means that the 

(ADM) method must be truncated for practical application since it gives a 

series solution and that the rate and region of convergence are a possible 

disadvantage of the method. However, their claim requires further 

investigation before it can be fully accepted by the science community in 

large.   
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Adomian decomposition of a system of nonlinear equations 

In this chapter, the Adomian decomposition of a system of nonlinear 

equations is presented along with the solution method of these systems. This 

chapter also presents the mathematical analysis of this method and 

accompanying theorem and proof. Numerical examples showing the solution 

of systems of nonlinear equations will also be presented. 

3.1 Decomposition method 

The first attempt to solve nonlinear equations using the (ADM) method was 

by K. Abboi and Y. Cherrault in 1994 [1]. In their study they applied the 

ADM method to solve the equation 𝑓(𝑥) = 0, where 𝑓(𝑥) is a nonlinear 

function. This method was also used by Babolian et al to solve a system of 

linear equations as well as an equivalent of this method using the classical 

iterative method Jacobi [11]. This method can also be extended to solve a 

system of nonlinear equations. To show this, consider the following 

nonlinear system of equations: 

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) = 0
⋮

𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

                                     (3.1) 

where each fi function maps a vector 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑡 of the n-

dimensional space ℝn into the real numbers ℝ. It is assumed that the 

previous system admits a unique solution. Now, consider ith equation of this 

system: 

𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) = 0                                           (3.2) 
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Without losing generality, xi can be obtained from equation (3.2) in 

canonical form as follows: 

𝑥𝑖 = 𝑐𝑖 + 𝑔𝑖(𝑥1, 𝑥2, … , 𝑥𝑛)                            (3.3) 

where 𝑔𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) is a nonlinear function and ci is a constant. In order 

to apply the ADM method, let  

𝑥𝑖 = ∑ 𝑥𝑖𝑚                                                                 (3.4)

∞

𝑚=0

 

and 

𝑔𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝐴𝑖𝑚

∞

𝑚=0

                                  (3.5) 

where Aim’s are the Adomian polynomials depending on 

𝑥10, … , 𝑥1𝑚 , … , 𝑥𝑛0, … , 𝑥𝑛𝑚 [2]. By substituting equations (3.4) and (3.5) in 

equation (3.3), it becomes: 

∑ 𝑥𝑖𝑚

∞

𝑚=0

= 𝑐𝑖 + ∑ 𝐴𝑖𝑚                                             ( 3.6)

∞

𝑚=0

 

From the equation(3.6), it can be defined that: 

𝑥𝑖0 = 𝑐𝑖                                                                  
𝑥𝑖,𝑚+1 = 𝐴𝑖𝑚, 𝑖 = 1, … , 𝑛, 𝑚 = 0, 1, 2, …  

             (3.7) 

The next step is, to approximate xi by 

𝜑𝑖𝑘 = ∑ 𝑥𝑖𝑚

𝑘−1

𝑚=0

                                                           (3.8) 

where  

lim
𝑘→∞

𝜑𝑖𝑘 = 𝑥𝑖                                            (3.9)                
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To determine the Adomian polynomials, the following formula is used [2]: 

𝐴𝑖𝑚(𝑥10, … , 𝑥1𝑚 , … , 𝑥𝑛0, … , 𝑥𝑛𝑚) =
1

𝑚!
[

𝑑𝑚

𝑑𝜆𝑚
𝑔𝑖(𝑥1, … , 𝑥𝑛)]

𝜆=0
    (3.10) 

Using the following equation: 

𝑥𝑖𝜆 = ∑ 𝜆𝑗𝑥𝑖𝑗

𝑚

𝑗=0

,        𝑖 = 1, … , 𝑛                                                   (3.11) 

The following results can be derived: 

𝐴𝑖0(𝑥10, 𝑥20, … , 𝑥𝑛0) = 𝑔𝑖(𝑥10, 𝑥20, … , 𝑥𝑛0) 

𝐴𝑖𝑚(𝑥10, … , 𝑥1𝑚 , 𝑥20, … , 𝑥2𝑚 , … , 𝑥𝑛0, … , 𝑥𝑛𝑚) =

∑ (
𝑥11

𝑘11

𝑘11!
…

𝑥𝑚1
𝑘𝑚1

𝑘𝑚1!
) (

𝑥12
𝑘12

𝑘12!
…

𝑥𝑚2
𝑘𝑚2

𝑘𝑚2!
) … (

𝑥1𝑛
𝑘1𝑛

𝑘1𝑛!
…

𝑥𝑚𝑛
𝑘𝑚𝑛

𝑘𝑚𝑛!
)Ω ×

𝜕Ω1+Ω2+⋯Ω𝑛

𝜕𝑥1
Ω1𝜕𝑥2

Ω2… 𝑥𝑛
Ω𝑛

𝑔𝑖(𝑥10, 𝑥20, … , 𝑥𝑛0),   𝑚 ≠ 0                  (3.12) 

where Ω represents: 

(𝑘11 + 2𝑘21 + ⋯ + 𝑚𝑘𝑚1) + ⋯ + (𝑘1𝑚 + 2𝑘2𝑚 + ⋯ + 𝑚𝑘𝑚𝑛) = 𝑚    (3.13) 

and  

Ω𝑖 = 𝑘1𝑖 + 𝑘2𝑖 + ⋯ + 𝑘𝑚𝑖 ,        𝑖 = 1, … , 𝑛                 (3.14) 

3.2 Convergence of the method  

Take into consideration the system of equations (3.1), the solution that is 

required is in the family: 

𝑥𝑖𝜆 = ∑ 𝑥𝑖𝑗𝜆𝑗

∞

𝑗=0

,         𝑖 = 1, 2, … , 𝑛.                            (3.15) 
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Let 𝜌 = min{𝜌1, 𝜌2, … , 𝜌𝑛}, where 𝜌𝑖 is the convergence radius of the series 

(3.15), assuming that ρ>1. By following Y. Cherrault and Y. Saccomandi’s 

study [14], and extending to 𝑛-dimensional space, equation (3.15) converges 

for |𝜆| ≤ 𝜌, with 𝜌 > 1. 

By supposing that 𝑔𝑖𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) can be expanded in an entire series, we 

obtain the following equation: 

𝑔𝑖𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) =  ∑

∞

𝑚=0

∑ 𝑎𝑘1𝑘2,…,𝑘𝑛
𝑥1

𝑘1𝑥1
𝑘2 , … , 𝑥𝑛

𝑘𝑛  (3.17)

𝑘1,…,𝑘𝑛∈𝑊={0,1,… }
𝑘1+𝑘2+⋯𝑘𝑛=𝑚  

 

with convergence radius 𝜌∗ > 1. The previous equation implies that the 

series in equation (3.15) converges for ||𝑥|| < 𝜌∗, With 𝜌∗>1. By using an 

extension of a classical results that are given by L. Gabet [17] and 

substituting equation (3.15) into (3.17), the following series is obtained: 

∑ 𝐶𝑚𝜆𝑚                                                  (3.18)

∞

𝑚=0

 

which has a convergence radius that is strictly greater than 1: 

𝑔𝑖𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) ==  ∑

∞

𝑚=0

∑ 𝑎𝑘1𝑘2,…,𝑘𝑛
∏ (∑ 𝑥𝑖𝑗𝜆

𝑗

∞

𝑗=0

)

𝑘𝑖𝑛

𝑖=1
𝑘1,…,𝑘𝑛∈𝑊={0,1,… }

𝑘1+𝑘2+⋯𝑘𝑛=𝑚  

(3.19) 

The m-row of this array converges to Aim defined in equation (3.10) by 

setting 𝜆 = 1, because 𝑔𝑖𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) can be developed in a Taylor 

series. The next problem is to prove the convergence of the double series in              

equation (3.19) for 𝜆 = 1, which is given in the following theorem. 
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Theorem 3.1 

If 𝑔𝑖𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) is an analytic function of n variables 𝑥1, 𝑥2, … , 𝑥𝑛 in 

||𝑥|| < 𝑅 and xi , i=1, 2, …, n, can be decomposed as an infinite series      

𝑥𝑖 = ∑ 𝑥𝑖𝑚, the parameterization 𝑥𝑖𝜆 = ∑ 𝑥𝑖𝑚𝜆𝑚 is absolutely convergent 

for 𝜆 ∈ [−1, 1] and the series xi can be majored by: 

𝑚′

𝑛(1+𝜀)
(1 +

1

1+𝜀
(

𝜆

𝜌
) + ⋯ +

1

(1+𝜀)𝑛 (
𝜆

𝜌
)

𝑛
+ ⋯ )                 (3.20) 

where 𝑚′≥ M, (M is the upper limit for the xi), (M/R ) < 𝜀 and 𝜌≥1, then the 

double series converges for 𝜆=1. 

Proof  

𝑔𝑖𝜆(𝑥1, … , 𝑥𝑛) is analytic in ||𝑥|| < 𝑅, then it can be written as: 

𝑔𝑖𝜆(𝑥1, … , 𝑥𝑛) ≤ 𝐿 (1 + 𝑛 (
𝑥

𝑅′) + ⋯ + 𝑛𝑛 (
𝑥

𝑅′)
𝑛

+ ⋯ ),        (3.21) 

where ||𝑔𝑖𝜆(𝑥1, … , 𝑥𝑛)||
∗

≤ 𝐿 (|| ||* is the dual norm), and                                      

𝑥 = max{𝑥1, … , 𝑥𝑛} and 𝑅′ ∈ [𝑀, 𝑅]. By employing the hypothesis in 

equation (3.20), we obtain: 

𝑥 ≤
𝑚′

𝑛(1+𝜀)
(1 +

1

1+𝜀
(

𝜆

𝜌
) + ⋯ +

1

(1+𝜀)𝑛 (
𝜆

𝜌
)

𝑛
+ ⋯ ) =

𝑚′

𝑛(1+𝜀)
(

1

1−
1

1+𝜀
(

𝜆

𝜌
)
) =

𝑚′

𝑛(1+𝜀−
𝜆

𝜌
)
                                                        (3.22) 

Substituting (3.22) into (3.21), the following equation is obtained: 

𝑔𝑖𝜆(𝑥𝑖, … , 𝑥𝑛) ≤ 𝐿 [1 +
𝑚′

𝑅′[1+𝜀−(
𝜆

𝜌
)]

+ (
𝑚′

𝑅′[1+𝜀−(
𝜆

𝜌
)]

)

2

+ ⋯ + (
𝑚′

𝑅′[1+𝜀−(
𝜆

𝜌
)]

)

𝑛

+ ⋯ ]  (3.23) 
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To reach convergence for equation (3.21), the following condition must be 

achieved: 

𝑚′

𝑅′[1+𝜀−(
𝜆

𝜌
)]

< 1                                                (3.24) 

i.e.  

𝜆 < 𝜌 (1 + 𝜀 −
𝑀

𝑅′)                                         (3.25) 

By choosing 𝜌 = 1, then equation (3.21) converges for 𝜆 = 1, if 𝜀 >

(𝑀/𝑅′). 

3.3 Solving system of  non-linear equations 

To show the effectiveness of using the Adomian decomposition method in 

solving systems of non-linear equations, the two following non-linear 

systems will be solved. The first system is as follows: 

𝑥1
2 − 10𝑥1 + 𝑥2

2 + 8 = 0

𝑥1𝑥2
2 + 𝑥1 − 10𝑥2 + 8 = 0

                         

Using equation (3.6) involves the following: 

𝑥1 = ∑ 𝑥1𝑚

∞

𝑚=0

=
8

10
+

1

10
𝑥1

2 +
1

10
𝑥2

2𝑥1

=
8

10
+

1

10
∑ 𝐴1𝑚(𝑥1

2)

∞

𝑚=0

+
1

10
∑ 𝐴1𝑚(𝑥2

2)

∞

𝑚=0

 

𝑥2 = ∑ 𝑥2𝑚

∞

𝑚=0

=
8

10
+

1

10
𝑥1𝑥2

2 +
1

10
𝑥1 

𝑥2 =
8

10
+

1

10
∑ 𝐴2𝑚(𝑥1𝑥2

2)

∞

𝑚=0

+
1

10
∑ 𝐴2𝑚(𝑥1)

∞

𝑚=0
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The 𝐴𝑖𝑚(𝑥𝑛) are given by: 

𝐴𝑖0(𝑥𝑛) = 𝑥𝑖0
𝑛  

𝐴𝑖1(𝑥𝑛) = 𝑛𝑥𝑖0
𝑛−1𝑥𝑖1 

𝐴𝑖2(𝑥𝑛) =
1

2
𝑛(𝑛 − 1)𝑥𝑖0

𝑛−2𝑥𝑖1
2 + 𝑛𝑥𝑖0

𝑛−1𝑥𝑖2 

𝐴𝑖3(𝑥𝑛) =
1

6
𝑛(𝑛 − 1)(𝑛 − 2)𝑥𝑖0

𝑛−3𝑥𝑖1
3 + 𝑛(𝑛 − 1)𝑥𝑖0

𝑛−2𝑥𝑖1𝑥𝑖2 + 𝑛𝑥𝑖0
𝑛−1𝑥𝑖3 

𝐴𝑖4(𝑥𝑛) =
1

24
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑥𝑖0

𝑛−4𝑥𝑖1
4 +

1

2
𝑛(𝑛 − 1)(𝑛 − 2)𝑥𝑖0

𝑛−3𝑥𝑖1
2 𝑥𝑖2 +

𝑛(𝑛 − 1)𝑥𝑖0
𝑛−2 × (

1

2
𝑥𝑖2

2 + 𝑥𝑖1𝑥𝑖3) + 𝑛𝑥𝑖0
𝑛−1𝑥𝑖4                      

and the first few Adomian polynomials for the nonlinear term 𝑥1𝑥2
2 are 

formulated as: 

𝐴0 = 𝑥10𝑥20
2  

𝐴1 = 2𝑥10𝑥20𝑥21 + 𝑥11𝑥20
2  

𝐴2 = 𝑥10𝑥21
2 + 2𝑥10𝑥20𝑥22 + 2𝑥11𝑥20𝑥21 + 𝑥12𝑥20

2  

𝐴3 = 2𝑥10𝑥20𝑥23 + 2𝑥10𝑥21𝑥22 + 𝑥11𝑥21
2 + 2𝑥11𝑥20𝑥22 + 2𝑥12𝑥20𝑥21 + 𝑥13𝑥20

2  

𝐴4 = (2𝑥20𝑥24 + 2𝑥21𝑥23 + 𝑥22
2 )𝑥10 + (2𝑥20𝑥23 + 2𝑥21𝑥22)𝑥11 +

(𝑥21
2 + 2𝑥20𝑥22)𝑥12 + 2𝑥20𝑥21𝑥13 + 𝑥20

2 𝑥14                                

From equation (3.7), we obtain: 

𝑥10 = 0.80000001 

𝑥11 = 0.1414400 

𝑥12 = 0.0360233 

𝑥13 = 0.0127908 

𝑥14 = 0.00520737 

𝑥15 = 0.00231817 

𝑥20 = 0.88000001 

𝑥21 = 0.076096 
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𝑥22 = 0.0252698 

𝑥23 = 0.0998425 

𝑥24 = 0.00441812 

𝑥25 = 0.00208511 

Sum of the first five terms gives: 

𝜑15 = 𝑥10 + ⋯ + 𝑥14 = 0.99778 

𝜑25 = 𝑥20 + ⋯ + 𝑥24 = 0.997853 

which is a good approximation of the exact solution 𝑥 = (1, 1)𝑡. To further 

show the capabilities of the Adomian decomposition method take the 

following non-linear system of equations: 

15𝑥1 + 𝑥2
2 − 4𝑥3 = 13

𝑥1
2 + 10𝑥2 − 𝑒3

−𝑥 = 11

𝑥2
3 − 25𝑥3 = −22

 

Using equation (3.6) involves the following: 

𝑥1 = ∑ 𝑥1𝑚

∞

𝑚=0

=
13

15
−

1

15
𝑥2

2 +
4

15
𝑥3 

𝑥1 =
13

15
−

1

15
∑ 𝐴1𝑚(𝑥2

2)

∞

𝑚=0

+
4

15
∑ 𝐴1𝑚(𝑥3)

∞

𝑚=0

 

𝑥2 = ∑ 𝑥2𝑚

∞

𝑚=0

=
11

10
+

1

10
𝑥1

2 +
1

10
𝑒−𝑥3 

𝑥2 =
11

10
−

1

10
∑ 𝐴2𝑚(𝑥1

2)

∞

𝑚=0

+
1

10
∑ 𝐴2𝑚(𝑒−𝑥3)

∞

𝑚=0

 

𝑥3 = ∑ 𝑥3𝑚

∞

𝑚=0

=
22

25
+

1

25
𝑥2

3 
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𝑥3 =
22

25
−

1

25
∑ 𝐴3𝑚(𝑥2

3)

∞

𝑚=0

 

The polynomials 𝐴𝑖𝑚(𝑥𝑛) are obtained the same way as the previous 

example and for the non-linear term 𝑒−𝑥𝑖 , we have: 

𝐴𝑖𝑚(𝑒−𝑥𝑖) = (−1)𝑚+1
𝑚𝑚−1

𝑚!
𝑒−𝑚𝑥𝑖0    

From equation (3.7), we obtain: 

𝑥10 = 0.86666667 

𝑥11 = 0.15400000 

𝑥12 = 0.01913015 

𝑥13 = 0.00506067 

𝑥14 = −0.00262029 

𝑥20 = 1.10000002 

𝑥21 = −0.3363282 

𝑥22 = −0.04389782 

𝑥23 = 0.00501670 

𝑥24 = −0.01179828 

𝑥30 = 0.88000000 

𝑥31 = 0.05324000 

𝑥32 = −0.0488349 

𝑥33 = 0.00632872 
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𝑥34 = −0.00111667 

Sum of the first six terms gives: 

𝜑15 = 𝑥10 + ⋯ + 𝑥15 = 1.04215 

𝜑25 = 𝑥20 + ⋯ + 𝑥25 = 1.03109 

𝜑35 = 𝑥30 + ⋯ + 𝑥35 = 0.923848 

Which is an approximation of  the exact solution 𝑥 =

(1.04214966, 1.03109169, 0.92384809)𝑡. 
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Conclusion 

In this study, the use of the Adomain decomposition method to solve 

systems of non-linear equation was studied in details and evaluated. Based 

on the results of this study, it was determined that the Adomain 

decomposition method is valid choice in solving a system of non-linear 

equations. During numerical testing, the Adomain Decomposition method 

provided accurate results with good approximation.  

 

 

 

 

 

 

 

 



 

 

-: الملخص  

الدراسة  تناقش   الموحهذه  الطرق  في احدى  المستخدمة  المعادلات    دة  و حل  خطية  الغير  الخطية 

المعادلات  والج  التفاضلية   وكذلك  بطريقة  زئي العادية  الطريقة  وتعرف هذه  التحليليةأة  في  و.  دومين 

الدراسة سيتم مناقشة طريقة  ه ب أذه  المعلومات الأساسية    تفصيل الدومين  الحدود ليتضمن    وكثيرات 

و الحدية الوالتقارب  بشكل  أقة  طري  مناقشةيتم    وعندما.  والمميزات   ت والاستخداما  شروط  دومين 

مناقشة   سيتم  منظومة  تطبيقاتهامفصل  إعطاء  خطية  الغير  المعادلات    على  عددية    أمثلة وسيتم 

الطريقة هذه  فاعلية  مدى  خلال  نتائجال.  لتوضيح  طريقة    توضح  العددية  الأمثلة   من  فاعلية  مدى 

 . خطية بسهولة وبدقة مرغوبةالغير المعادلات   دومين التحليلية في حل منظومة أ
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