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Abstract:

In this paper, we studied the evaluation and stiatl distribution
of the energy of plasma electrons for a groupisiftopes, which starts
from Hafnium {7$Hf ) and ends at osmium'8€0s). We have used
Maxwell's distribution andBased on the results oi#d from the
experimental work, proved that the temperaturehef plasma is greater
than the capacity of ionization of the upper elecic level . In addition,
by the program MATLAB was used for evaluating therggndistribution
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Calculating the energy distribution f¢(E) of the plasma electrons

fo(E) of the plasma electrons. lllustrative examm@es given to show the
accuracy and reliability of the results.

Keywords. Energy distribution; Probability; Maxwall distsution
; Atomic levels; Electron energy .
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1. Introduction

The electron energy distribution functi®E) plays an important
role in plasma modeling. Various approaches caudee to describe the
fo(E), such as Maxwellian, Druyvesteyn, or using a samtutof the
Boltzmann equation[1]. The electron energy distrdou functionfe(E) is
essential in plasma modeling because it is needembmpute reaction
rates for electron collision reactions. Becausectala transport
properties can also be derived from f{{&), the choice of thé&(E) you
use influences the results of the plasma modekhdf plasma is in
thermodynamic equilibrium, thg(E) has a Maxwellian shape. In most
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plasmas, for technical purposes, deviations from Maxwellian form
occur[1].

To describe thé&(E), several possibilities are available, such as a
Maxwell or Druyvesteyn function. In addition, a gealized form is
available, which is an intermediate between the Wik and the
Druyvesteyn function. If the electrons are in thedynamic equilibrium
among each other, the distribution function is Makian. However, this
is only true if the ionization degree is high. Herdectron-electron
collisions drive the distribution towards a Maxviesl shape. Inelastic
collisions of electrons with heavy particles leadatdrop of thd(E), at
higher electron energies. [1]

Normally, the distribution function is divided byor illustration
purposes. This kind of distribution function isalenown as an electron
energy probability functionf{ E)). For

The rate coefficients for excitation and ionizatlaghly depend on
the shape of thé(E). This is due to the exponential drop-off in the
population of electrons at energies exceeding ttievadion threshold.
Using a Maxwelliaf(E) can lead to an overestimation of the ionization
rate, which is shown below.

2. The Maxwell-Boltzmann distribution

The distribution was first derived by Maxwa&h 1860 on
heuristic grounds.[4] Boltzmann later, in the 1§ 7#&sried out significant
investigations into the physical origins of thistdbution Normally, the
distribution function is divided by for illustrain purposes. This kind of
distribution function is also known as an electr@mergy probability
function (fe(E)). For a Maxwellian function, thisstéts in a straight line
with a slope of ,as in Fig(1)(a,b)[1] .The Maxwelbi&mann distribution
Is a particular probability distribution named affames Clerk Maxwell
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and Ludwig Boltzmannlt was first defined and used for describing
particle speeds in idealized gases, where thecfegtmove freely inside a
stationary container without interacting with ometier, except for very
brief collisions in which they exchange energy amammentum with each
other or with their thermal environment. The terparticle" in this
context refers to gaseous particles only (atomsnolecules), and the
system of particles is assumed to have reachedmduagmnamic
equilibrium.[2] The energies of such particles dall what is known as
Maxwell-Boltzmann statistics, and the statisticatrbution of speeds is
derived by equating particle energies with kinetergy

Mathematically, the Maxwell-Boltzmann distributios the chi
distribution with three degrees of freedom (the ponents of the
velocity vector in Euclidean space), with a scasgameter measuring
speeds in units proportional to the square roo(TédMm) (the ratio of
temperature and particle mass).[3]
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Fig(1)a:Maxwellianf(E) in eV>?for mean Fig(1)b: Maxwellianf,(E) in eV for mean
.electron energies from 2 — 10 eV electron energies from 2 — 10 eV
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The Maxwell-Boltzmann statistics gives the averagenber of
particles found in a given single-particle micréstaUnder certain
assumptions, the logarithm of the fraction of mdes8 in a given
microstate is proportional to the ratio of the gyeof that state to the
temperature of the system:

N\ E;
~tog(37)e 7 (1)

The assumptions of this equation are that the gba@stido not
interact, and that they are classical; this mehas @¢ach particle's state
can be considered independently from the otherighest states.
Additionally, the particles are assumed to be grrfal equilibrium.[2,5]
The f(E) can be computed by solving the Boltzmann equaftidre
Boltzmann equation describes the evolution of tis&idution function, ,
In a six-dimensional phase space.

This relation can be written as an equation byoohicing a
normalizing factor:

fE) = ﬁ exp (79), @

[ T=En ] andE, is the electron energy, (keV)

To solve the Maxwell-Boltzmann equation and, thenesfcompute
thef(E) , drastic simplifications are necessary. A commapproach is to
expand the distribution function in spherical hanms. Thef(E) is
assumed to be almost spherically symmetric, so stees can be
truncated after the second term (a so-called two-tapproximation).
This approach is the most accurate way to compet&(E) because an
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anisotropic perturbation, due to inelastic collspis taken into account.
However, this is also the most computationally exgpee approach.

It is demonstrated that if the plasma temperafliyés greater than
the ionization potential of the upper electronieele then the probability
of finding an electron and a hole at the upper laneer atomic levels
respectively, S is given by [6].

By the equipartition theorem, this energy is evedigtributed
among all three degrees of freedom, so that theggneer degree of
freedom is distributed as a chi-squared distrilbutioth one degree of
freedom:[7,8]

S =n.(*/5)°, 3)

Wherengds the electron density in the plasma
(ne, ~ 102°%cm™=3)

and A; =

2
7T/ \/ 2m3T> )

Is the thermal wavelength of the plasma electrod mp is the
electron mass .
4- Results & Discussion

Data was processed using the program MATALB. Wisaaéstical
equations were obtained and different forms showhmgy relationship
between the distribution of the energy of plasnectebng, (E) and the
electron energy (g and the transition energy JEAs we mentioned in
the theory that the entire theoretical procedunesezjuations are given in
our research.Where we present how to calculatertbegy distribution of
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the plasma electrons.Where as the mean equatiahivsalculating the
energy distrbution is equ.(2), to be notice . Siogetheoretical model is
simple , it is not necessary for us to know thaitet It is sufficient for

us to consider only the energy balance from thiedlisorbital binding

energy in tables .

The Maxwell distributiory, (E) varies directly with the square root
of the electron energy and inversely with the sgquaot of the plasma
temperature, so the distribution, reaches the pgdke higher electron
energies and at lower plasma temperature ( T ) EromTable .(1), the
Maxwell distribution varies in the range from 4.0Ffor 189Hf to 0.869
for 181Ta.

The probability S of finding an electron and a hati¢he upper and
lower atomic levels, respectively , varies directiyth the thermal
wavelength of the plasma electrob, to the power (3) in turn
proportional inversely with the plasma temperatie- Ey ), this
probability decreases with the transition energpnirthe same table, the
probability of finding an electron and a hole ae thpper and lower
atomic levels respectively (S) varies in the rafgen 70.11E-32 for
182 with a transition energy of 222.108KeV and a nmaltarity of E1
to 30.72E-07 for'8iTa with a transition energy of 6.238 KeV and
transition multipolarity of E1

From the graphical representation d&ifg(2)a, the Maxwell
distribution f(E) varies with the electron energy and the nuclear
transition for different atomic numbers so the risttion reaches a peak
at the higher electron energy and a lower plagmgpérature (T ~B.

University Bulletin — ISSUE No.22- Vol. (1) — March 2020.




Calculating the energy distribution f¢(E) of the plasma electrons

From the graphical representation @fy(2)b, the probability ( S)
increases with the electron energy and decreast#s the transition
energy for different atomic numbers.

Table (1). The Maxwell distribution of the plasma &ctrons fs(E) and the

probability S at different plasma temperature

Transition Energy of
Nuclide : : T=En(keV)[8] | electron~E | f(E) S
multipolarity[8]

(keV)
E=4 0.162

1764 E2 88.34 3 E=8 | 0.300| 55
E=12 | 0.363
E=4 0.204

177 HE E2 112.950 E=8 0.279 53'1219E'
E=12 | 0.332
E=4 0.193

177Hf E2 128.503 E=8 | 0.265 0
E=12 | 0.314
E=4 0.177

177Hf E2 153.284 E=8 0.245 21'f15 E-
E=12 | 0.292
E=4 0.155

177HE E2 204.105 E=8 0.214 9'(ﬁE'
E=12 | 0.258
E=4 0.156

177 Hf E2 208.366 E=8 0.213 8'51215
E=12 | 0.256
E=4 0.151

177 Hf E4 214.434 E=8 0.210 7'7151E'
E=12 | 0.252
E=4 0.081 | 40.32 E-

180

SOHf El 57.555 E=g 0366| 10
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Transition Energy of
Nuclide multipolarity[8] T=En(keV)[8] | electron~E. | fe(E) S
(keV)
E=12 0.418
E=4 0.224
180Hf E2 93.326 E=8 0.303 g.i%E-
E=12 0.357
E=4 0.151
189Hf E2 215.256 E=8 0.257 ”ﬁE'
E=12 0.252
E=4 0.870
180Hf E2 332.277 E=8 0.541 20'17; E-
E=12 0.654
4.0 E-
E=4
1oOHf E2 443.09 E=8 or | 883F
E=12 0.471 12
B 0.970
=4 é—gg 61.21 E-
180Hf E3 500.64 E=8 '
E=12 0.444 13
B 0.539
Table.(1). Continued
" Energy of
: Transition - N
Nuclide multipolarity[8] T=En(keV)[8] | electron~E.| f¢(E) S
(keV)
E=4 0.476
181Ta El 6.238 E=8 0.355 ?500772
E=12 0.229
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Transition ENRAEY) Ol

Nuclide multipolarity[8] T=En(keV)[8] | electron~E. | f(E) S
(keV)
E=4 | 0.189

1817, E3 133.024 E=8 | 0.2608] 2
E=12 | 0.3098
E=4 | 0.869

1817, E4 615.21 E=8 | 0020 | 22
E=12 | 0.890
E=4 | 0.353

182y E1 31.738 E=8 | 0441 | 230
E=12 | 0.476
E=4 | 0.259

182y E2 65.711 E=8 | 0349 | 2P
E=12 | 0.401
E=4 | 0.258

182y E1 67.750 E=8 | 0345 247
E=12 | 0.398
E=4 | 0.233

182y E2 84.680 E=8 | 0316 | o
E=12 | 0.369
E=4 | 0.217

182y E2 100.106 E=8 | 0205 | 2.
E=12 | 0.347
E=4 | 0.204

182y E2 113.672 E=8 | 0279 | 2277
E=12 | 0.329
E=4 | 0.202

182y E1 116.418 E=8 | 0276 | o0
E=12 | 0.327

182y E1 152.430 =4 | 0178 215(
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Transition ENRAEY) Ol
Nuclide multipolarity[8] T=En(keV)[8] ele(cl:(r_:‘c\)/r;Ee fo(E) S
E=8 0.246 | E-11
E=12 0.293
E=4
_ 0.176
182w El 156.386 5__182 0.242 ?1916
B 0.289
E=4 0.148
182w El 222.108 E=8 0.206 20_'3121
E=12 0.248
E=4 0.304
133y E2 46.484 E=8 | 0304 | D7
E=12 0.443
Table.(1). Continued
" Energy of
: Transition - _
Nuclide multipolarity[8] T=En(keV)[8] ele(cl:(reci/r; E | f«(E) S
E=4 0.288
182w E2 52.595 E=8 0.378 SEZf(?
E=12 0.519
E=4 0.217
1831y E2 99.079 E=8 |0.206 "%
E=12 0.348
E=4 0.208
183w E2 109.726 E=8 0.284 ?581317
E=12 0.334
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Transition Energy of

Nuclide multipolarity[8] T=En(keV)[8] | electron~E. | f¢(E) S
(keV)
E=4 0.016

183w E2 192.645 E=8 0.220 1501715
E=12 0.265
E=4 0.130

183w E2 291.724 E=8 0.182 3;501722
E=12 0.219
E=4 | 0207 59.90

185 _ . .

“2Re M1 234.157 E_—8 0242 E-12
E=12
E=4 0.218

187Re El 72.001 E=8 0.336 2Eol7(())
E=12 0.391
E=4 0.211

187Re E2 106.596 E=8 0.287 ?531710
E=12 0.363
E=4 0.205

187Re M1 113.747 E=8 |0.279 5E21212
E=12 0.330
E=4 0.190

187Re E2 134.243 E=8 0.260 ?511419
E=12 0.308
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Table.(1). Continued

Transition gl

Nuclide multipolarity[8] T=En(keV)[8] | electron~E. | fe(E) S
(keV)
E=4 0.153

185Re E2 208.844 E=8 0.211 S'ﬁE'
E=12 0.256
E=4 0.187

18605 E2 137.157 E=8 | 0.258| =)
E=12 0.306
E=4 0.176

18805 E2 155.032 E=8 | 0243 277
E=12 0.291
E=4 0.248

18605 E4 74.379 E=8 0.338 }581413
E=12 0.386
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Z=74.+.

£(E)

Fig.(2)a. The energy distribution £(E) of the plasma electron as a function of the
normalized values of i and E for different Z number.
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Fig(2)a.Continued.
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Z=73 =72

x 101

= 107

2

E.(KeV) et 5

Fig(2)b .Variation of the probability S with the normalized values of i and E.
for different Z number.
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Fig(2)b.Continued.
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5- Conclusions

In this paper, the agreement between theatetiand
experimental levels is satisfactory for excitatemergies and transition
probabilities and the energy distributidgfE) . Where the Maxwell
distribution varies directly with the square robtlee electron energy and
inversely with the square root of the plasma temjpee . The Maxwell
distribution varies in the range from 4.0E-07 fd3Hf ) to 0.869 for
(181Ta). The theoretical calculations for the energstrithution fo(E)
using the MATALB for the evaluation and the gragaiirepresentation
of the results reasonably agree with the expertiahen
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