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ABSTRACT 

In this paper, we consider singular linear systems of algebraic equations on the form  We introduce 

formulas for the Moore- Penrose generalized inverse of  depend on the ranks of , and based on the adgugate 

matrix. Using these formulas, we get generalized Cramer rules for the given systems. 
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1. INTRODUCTION 
            Consider the following singular linear system of algebraic equations 

                                        (1.1) 

 where  If  and is 

invertible (non-singular), then the system (1.1) is easy to solve, the unique solution is . The 
unique solution for (1.1) using Cramer's rule when  is invertible is  

                                                               (1.2) 

where  denotes the determinant of ,  is the matrix obtained by replacing its th column with the 

vector . If  is an arbitrary matrix in , then the system (1.1) becomes more difficult to solve. One 

of the methods to solve (1.1) is using the Moore-Penrose generalized inverse (or shortly MPGI) of , 
denoted by . 

            There are representations of MPGI for matrices depend on full column rank, full row rank, and 
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full rank factorization for the matrices . If  has  full column rank, then  has left inverse  satisfies  

                                               (1.3) 

it is   

.                                               (1.4) 

If  has  full row rank, then  has right inverse  satisfies  

   ,                                                 (1.5) 

it is  

.                                                  (1.6) 

If   has  full rank factorization,  then 

.                                        (1.7) 

   In this paper, the representations of MPGI for a matrix  in (1.1) using the adjugate matrix are 
given. These representations depend on full column rank, full row rank, full rank, and full rank 
factorization, we give some lemmas and theorems about that. Then we use these representations to get 
generalized Cramer rules for finding the least squares solution with the minimum norm for (1.1) and give 
theorems for that. Finally, we give numerical examples to illustrate our results. 

            In 1989, Wang [11] gave a Cramer's rule for finding the solution for a class of singular equations 
(1.1) when  belongs to the range of , where  is the index of .  
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            In 2008, Kyrchei  gave Cramer's rule for quaternion systems of linear equations. In the same 

year, he  introduced analogues of the adjoint matrix for generalized inverses and obtained 
corresponding Cramer rules in some cases for some systems. In 2015, he  introduced Cramer's rule for 
some generalized inverses, and obtained the least squares solution with the minimum norm for (1.1) when 

 and when , also he obtained the least squares solution with the 
minimum norm for the system  for some cases, and other results for other systems. 

         Throughout this paper,  is the set of  by  matrices with complex entries,  be a subset 
of  in which any matrix has rank ,  be the identity matrix,  be the transpose of a matrix , and 

 be the conjugate transpose of . The entries of  are , where  and  denote the th row and th 

column respectively. ,  denote the matrices obtained from  by replacing its  row and  

column with the vector  respectively. Let  denotes the cofactor of , it is  times the 

determinant of the  minor of . 

         This paper is organized as follows. Some preliminaries are given in section 2. Section 3 gives 
representations of MPGI using the adjugate matrix dependence on the full column rank, full row rank, full 
rank, and full rank factorization. In section 4, we get the generalized Cramer rules using the 
representations given in section 3. In section 5, we give examples to illustrate our results. 

  

2. PRELIMINARIES 
         In this section, we introduce some important definitions, algorithms, and theorems (we refer the 

reader to [2-4]). 

Definition 2.1 (MPGI of a matrix) 

         If , then  is unique and it is called the Moore-Penrose generalized inverse of  
if it satisfies the following conditions: 

(1) ,  

(2)  

(3)  

(4)   

Definition 2.2 (The row echelon form) 

     A matrix   which has rank   is said to be in row echelon form if  is of the form  

,  

where the elements  of   satisfy the following conditions: 

 (1)  when  

 (2) The first non-zero entry in each row of  is 1.  
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 (3) If  is the first non-zero entry of the th row then the th column of  is the   unit vector  

whose only non-zero entry is in the th position. 

Definition 2.3 (The full rank factorization)  

         A matrix  with , is said to be a full rank factorization if  and  have 
 columns. 

Definition 2.4 (The full column rank) 

         We say  has full column rank if the column rank of  is equal to the number of its 
columns, where the column rank is the maximum number of linearly independent columns. 

Definition 2.5 (The full row rank) 

         We say  has full row rank if the row rank of  is equal to the number of its rows, where 
the row  rank is the maximum number of linearly  independent rows. 

Definition 2.6 (Full rank)  

         An   by  matrix has full rank if  equals the smaller of  and . 

Algorithm 2.1 To obtain the full rank factorization and MPGI for : 

(1) Reduce  to row echelon form . 
(2) Select the distinguished columns of  (they are the columns that correspond to the columns 

 in ) and place them as the columns in a matrix  in the same order as they appear in .        
            (3) Select the non-zero rows from  and place them as  rows in a matrix  in the  

                 same order as they appear in .     

(3) Compute   and . 

(4) Compute as . 
Theorem 2.1 If  where , , , and  

, then  

.   

3. AN ANALOGUES OF THE ADJUGATE MATRIX FOR MPGI  

         Determinant representations of MPGI for matrices that are based on analogues of the adjugate 
matrix were studied in [6-8, 10, 15]. We shall use some known facts [4, 8], and give some new lemmas 
and theorems. 

Lemma 3.1 [6]  For any matrix , there exists a unique Moore-Penrose inverse . 

Theorem 3.1 A rectangular matrix has a right MPGI  if and only if it has full row rank.   

Theorem 3.2 A rectangular matrix has a left MPGI  if and only if it has full column rank. 

Corollary 3.1 If a rectangular matrix has either a left or a right MPGI, then  has MPGI . 

Remarks 3.1 



ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  Asmaa M. Kanan 

 

335 

1) If , then .  

2) If , then . 
Lemma 3.2 Let , then 

1. If  has full column rank, or full column rank of  equals the full rank, then  has the 
following representation 

          (3.1) 

where is the cofactor of ,   is the determinant of the matrix   after replacing its 1st 

column with the th column of . That is  

, 

and  is the determinant of the matrix   after replacing its th column with the th column of 

. That is  

. 

So, we can simplify (3.1) into the form 

.             (3.2) 

2.  If  has full row rank, or the full row rank of  equals the full rank, then  has the following 
representation 

           (3.3) 

which is equivalent to  

.             (3.4) 

3. If  is a square matrix and has full rank, then . 

Lemma 3.2 If    with  , such that  is a full rank 

factorization, then  
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,                     (3.5)        

where  .  

4. GENERALIZED CRAMER RULES USING MPGI  

We know that Cramer's rule (1.2) gives an exact solution for non-singular square systems of linear 
equations [1]. In this section we give generalized Cramer rules using MPGI for solving the singular 
systems of linear equations (1.1). All solutions we obtained are least squares solutions with the minimum 
norm [2,4]. We give new proofs of generalized Cramer rules because it is very important in linear 
algebra. 

Theorem 4.1 [2] Suppose that  and . Then  is the minimal least squares solution to 
. 

Theorem 4.2  Let  in (1.1), then               

(1) If has full column rank, or the full rank equals full column rank, then the least squares solution with 
the minimum norm for the system (1.1) is   

                                                                                                  (4.1) 

which is equivalent to the form 

 .                                           (4.2) 

(2) If has full row rank, or the full rank equals full row rank, then the least squares solution with the 
minimum norm for the system (1.1) is   

                                                               (4.3)   

We have two proofs for this theorem. 

Proof 1.  If  has full column rank, or the full rank equals full column rank, then we use (3.1) or 
(3.2) (they are equivalent) and apply Theorem 4.1 to get the form (4.1) which is equivalent to (4.2). 

Proof 2.  If  has full column rank, or the full rank equals full column rank, then in this case use 
(1.4) and apply Theorem 4.1 as following 

 

   

   

So,   

. 
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         The two poofs of (2) is analogous to the last proofs 1 and 2, but we will use (3.3) or (3.4) in proof 1 
then apply Theorem 4.1. For the second proof, we use (1.6) (which satisfies (1.5)) as in  proof 2, and do 
the same steps. 

Theorem 4.3  If   with , such that  is a full rank 
factorization, then the least squares solution with the minimum norm for (1.1) is  

 . 

                                      (4.4) 

Proof. Using Theorem 4.1 where  is given by (3.5), then we get (4.4). 

         Note that, we can apply Theorem 4.3 when  .  

5. NUMERICAL EXAMPLES  

         In this section, we give some examples to illustrate our main results. 

Example 5.1  Consider the following system 

 

 

 

We can write this system in the form (1.1), where  

. 

Since , then  has full column rank (also, it has full rank), in this case, we 
use the form (4.1) or (4.2). 

 

If  we use (4.1) then  

  

  

where 
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Now,  

  

  

Remark 5.1 About example 5.1, we obtained the approximate solution. Furthermore, you can use the 
form (4.2) and will get the same results. The solution we obtained is the same solution obtained using the 
method used in [4]. 

Example 5.2  Let us consider the system  

  

 
We can write this system in the form (1.1), where   

. 

Since , then  has full row rank (also, it has full rank), in this case, we use 
the form (4.3) to find  as following. 

 

  

  

  

where   
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Hence  

,   

is  the solution for the given system. 

Example 5.3 Let us consider the system  

  

 
The coefficients matrix is  

. 

Since , then  has not full  rank. It is a full rank factorization. We can write  
as  

 

with  , where  

  

To find solution for the given system, we use the form (4.4), where 

   

  

  

  

  

Hence   
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6.CONCLUSIONS  
In this study, we obtained the representations for MPGI of some matrices using the adjugate matrix. 

Then we used these representations to get generalized Cramer rules. Finally, we used the generalized 
Cramer rules to find the minimal least squares solutions for the singular linear systems of algebraic 
equations (1.1). 
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