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ABSTRACT

In this paper, we consider singular linear systems of algebraic equations on the form Ax = b. We introduce
formulas for the Moore- Penrose generalized inverse of 4 depend on the ranks of 4, and based on the adgugate
matrix. Using these formulas, we get generalized Cramer rules for the given systems.
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The M oor e-Penrose Generalized I nver se and Generalized Cramer Rulesfor Solving Singular Linear Algebraic Systems
1. INTRODUCTION
Consider the following singular linesstem of algebraic equations
Ax =bhAeC™ " xe " beC™ (1.1)
where A= (a;); i=Tm,j=Tn,x=(xy%; =x,),b=(by by ~~by) If A€C™ and is

invertible (non-singular), then the system (1.1e#&sy to solve, the unique solutionxiss A™*b. The
unique solution for (1.1) using Cramer's rule whisis invertible is

x, = 14l

S 7

j=1n 1.2)

Where|f1}-| denotes the determinant af, 4; is the matrix obtained by replacing jt& column with the

vectorb. If A is an arbitrary matrix i€™**, then the system (1.1) becomes more difficulilees One
of the methods to solve (1.1) is using the MoorarBse generalized inverse (or shortly MPG1 A4,
denoted by4T.

There are representations of MPGI fatrioes depend on full column rank, full row raakd

Asmaa M ohammed K anan:asmaakanan20@gmail.com

full rank factorization for the matricgg]. If A has full column rank, thed has left inversei’ satisfies
ATAx [LAAT 21 (L.3
it is
AT = (47 4)7tan 4).

If 4 has full row rank, thed has right inversgl satisfies

AAT ~ 1 ATA 2 ], 1.8)
itis
AT = A% (AA9)™L (1.6)
If 4 has full rank factorizatiory = EC then
At =c*(cc)y Y (B*B) 1B". (1.7)

In this paper, the representations of MPGI fanatrix 4 in (1.1) using the adjugate matrix are

given. These representations depend on full coluamk, full row rank, full rank, and full rank
factorization, we give some lemmas and theoremsitaltiat. Then we use these representations to get
generalized Cramer rules for finding the least sggiaolution with the minimum norm for (1.1) anseyi
theorems for that. Finally, we give numerical exéemsfto illustrate our results.

In 1989, Wang [11] gave a Cramer's fatefinding the solution for a class of singulajuations
(1.1) when4 belongs to the range af, wherek is the index ofd.
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In 2008, Kyrche[5] gave Cramer's rule for quaternion systems of tieemations. In the same

year, he [6] introduced analogues of the adjoint matrix for egalized inverses and obtained
corresponding Cramer rules in some cases for sgaterss. In 2015, h[2] introduced Cramer's rule for

some generalized inverses, and obtained the lgaates solution with the minimum norm for (1.1) whe
rank(4) =n and whenrank(4) = <m < n, also he obtained the least squares solution thigh

minimum norm for the systemd = & for some cases, and other results for other sygstem

Throughout this papet™*™ is the set ofn by n matrices with complex entrieg™™ be a subset
of ©™™ in which any matrix has rank I be the identity matrix4” be the transpose of a matdx and
A" be the conjugate transposeAhfThe entries 0" area;;, wherea; anda®; denote theéth row andjth
column respectively(4), b, (Ajd.b denote the matrices obtained freinby replacing itsi row andj
column with the vectol respectively. Let4;; denotes the cofactor of*4, it is (—1)'*7 times the
determinant of thei, /) minor of A*A.

This paper is organized as follows. Somaipinaries are given in section 2. Section 3 give
representations of MPGI using the adjugate magpetidence on the full column rank, full row rankl f
rank, and full rank factorization. In section 4, wget the generalized Cramer rules using the
representations given in section 3. In sectionégwe examples to illustrate our results.

2. PRELIMINARIES
In this section, we introduce some impart#efinitions, algorithms, and theorems (we réifer

reader to [2-4]).
Definition 2.1 (MPGI of a matrix)

If A € ™" thenA® € €**™ is unique and it is called the Moore-Penrose gdized inverse ofd
if it satisfies the following conditions:

(1) AATA = 4,

(2) ATAAT = AT,

(3) (AAT)* = 44T,

(4) (ATA) = ATA

Definition 2.2 (Therow echelon form)

A matrixE € €™*" which has rank is said to be in row echelon formEfis of the form

D?"}C?‘!
o ]

(m—ri=n

where the elementd; of D,.,, satisfy the following conditions:
(1) d;; = 0 wheni = j.

(2) The first non-zero entry in each rowf, ,, is 1.
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() If d;; =1 is the first non-zero entry of thiéh row then thejth column ofD is the  unit vectoe,
whose only non-zero entry is in thid position

Definition 2.3 (Thefull rank factorization)

A matrixd = BC € €™ with rank(4) = r, is said to be a full rank factorizationdfand¢” have
r columns.

Definition 2.4 (Thefull column rank)

We sayd € C™*™ has full column rank if the column rank df is equal to the number of its
columns, where the column rank is the maximum nurob&nearly independent columns.

Definition 2.5 (Thefull row rank)

We sayd € €™*" has full row rank if the row rank ¢f is equal to the number of its rows, where
the row rank is the maximum number of linearlylependent rows.

Definition 2.6 (Full rank)
An m by n matrix has full rank if-ank(4) equals the smaller e andr.

Algorithm 2.1 To obtain the full rank factorization and MPGI fbre ©™*™:

(1) ReduceA to row echelon fornk,.
(2) Select the distinguished columnsh(they are the columns that correspond to the cotum

e, e, ..., 2, 1N E;) and place them as the columns in a mé&8rir the same order as they appead.in
(3) Select the non-zero rows frgmand place them as rows in a matin the

same order as they apped,in

(3) Compute(cC*y™* and(B*B) ™.

(4) Computed™ as AT = c*(cc*)™* (B*B) 'B*.

Theorem 2.1 If A=BC where A € C™"", BEC™, C ecCcr", and
r = rank(A) = rank(B) = rank(C), then

AT =¢c*(ccy™t (B*B)™1B*.
3. AN ANALOGUESOF THE ADJUGATE MATRIX FOR MPGI

Determinant representations of MPGI fortnoas that are based on analogues of the adjugate
matrix were studied in [6-8, 10, 15]. We shall ssene known facts [4, 8], and give some new lemmas
and theorems.

Lemma3.1[6] For any matrix4 € €™**, there exists a unique Moore-Penrose invaise
Theorem 3.1 A rectangular matrix has a right MP@&I if and only if it has full row rank.
Theorem 3.2 A rectangular matrix has a left MPQ@T if and only if it has full column rank.
Coroallary 3.1 If a rectangular matrix has either a left or a tighPGl, thend has MPGIl4T.

Remarks 3.1
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1) If AT4=1] then 44T = I.
2) If AAT ~ ], then ATA = I.
Lemma3.2Let 4 € C™*" | then

1.1f 4 has full column rank, or full column rank & equals the full rank, the’PGI(A) has the
following representation

Xayj Ay Xapd, XayAy
t=_1 (Zayd, Zaydy 7 Zemdo | i _Tm j=1n (3.1)
|A*Al .. ame
ﬂ’l}'ﬂin E ﬂ’!}"qin o E ﬂ’m}'ﬂin

whered, ; is the cofactor oA*4, ¥ a, A, is the determinant of the matri4*A after replacing its L
column with themith column ofd*. That is

Z ﬂ’m_;l'}l:'l = |(A$Aj,1a;n|,

and} a_.A. is the determinant of the matris*4 after replacing its:th column with thenth column of

mj<tin

A*. That is
E ﬂ’m}'}lin = |[J£13A]nai:nl

So, we can simplify (3.1) into the form

I(A°4) jayl  [(A%A) a5 - [(A7A),al,l
1 ® ® ® = ® ®
AT = Yo |[f1 -‘r:lg].,gﬂ_ll H:H f_l_]_,gﬂ,gl |[-£1 A],gﬂ,ml ) (3.2)
1(4%4) 05| 1(4°4),a%] - [(A7A).all

2. If 4 has full row rank, or the full row rank @f equals the full rank, thed PGI(4) has the following
representation

2“51141;' Zﬂ’z'lAZj Eaz‘lﬂmj
Al =pig| Toaty Taghy v Mook |i=Tm j=Tn @9
@Ay E"'mﬂ:j E“mﬂmj
which is equivalent to
|(AA") ail  [(A4"),ail - [(A47),, ail
AT=$ |(f1f1f=_j_1,ﬂ:§,| |(ﬁ1ﬂf‘_]_g,f1§,| 1(44%) a3 | | (3.4)
(A4 .| 1(A4).a%| - |(AA47),, a, |

3. If Ais a square matrix and has full rank, tkgn= 472,

Lemma 3.2 If A=EC¢e ™" with rank(4) =rank(B) =rank(C) = r, such thatd is a full rank

factorization, then
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Xio,l(cc?), el | (B*B), lbf1$| e Xiol(CC) et | (B*B), bfm$|

AT (3.5)

- lcc*||5*Bl p s R
T l(cc?) e l|(B*B) By - Zio,l(CC™)icp||(B*B) bS, |

where B = (b];) € ™", C = (g;) € C™™,

4. GENERALIZED CRAMER RULESUSING MPGI

We know that Cramer's rule (1.2) gives an exaaitswl for non-singular square systems of linear
equations [1]. In this section we give generalif&dmer rules using MPGI for solving the singular
systems of linear equations (1.1). All solutionsoiained are least squares solutions with thermum
norm [2,4]. We give new proofs of generalized Cramdes because it is very important in linear
algebra.

Theorem 4.1 [2] Suppose tha# € C™*" andb € C™. ThenATh is the minimal least squares solution to
Ax = b,

Theorem 4.2 LetA € ©™*" in (1.1), then
() If A has full column rank, or the full rank equals fedlumn rank, then the least squares solution with

the minimum norm for the system (1.1) is
1

%; = o T (A°4) j a5 |y, j=Tm (4.1)
which is equivalent to the form
et ats|
=i =1n. 4.2)

(2) If A has full row rank, or the full rank equals full raank, then the least squares solution with the
minimum norm for the system (1.1) is
l T

2= B[ (44, g5 b, j=Tm. (4.3)

We have two proofs for this theorem.

Proof 1. If A € €™*" has full column rank, or the full rank equals fedlumn rank, then we use (3.1) or
(3.2) (they are equivalent) and apply Theorem d det the form (4.1) which is equivalent to (4.2).

Proof 2. If A € C™*™ has full column rank, or the full rank equals fudlumn rank, then in this case use
(1.4) and apply Theorem 4.1 as following

x=ATh
=(A"A)"14%D

= ﬁ adj(A*4)(A*b)

So,

(474) .(a"w .
i = |—I.;}|rj = 1,'”- .
|a*al
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The two poofs of (2) is analogous to @ proofs 1 and 2, but we will use (3.3) or (3Mproof 1
then apply Theorem 4.1. For the second proof, vee(i$) (which satisfies (1.5)) as in proof 2, alad
the same steps.

Theorem 4.3 If 4 = BC € C™*" with rank(A4) = rank(B) = rank(C) = r, such thatd is a full rank
factorization, then the least squares solution wighminimum norm for (1.1) is

_ Eifeeniey]|@m ol [p AT ftee e [6m) L [pat 3L e | 8°8) b [
1 lec®ll5®sl '

(4.4)
Proof. Using Theorem 4.1 whet#' is given by (3.5), then we get (4.4).

Note that, we can apply Theorem 4.3 wherk(4) =r < min {m, n}.

5. NUMERICAL EXAMPLES
In this section, we give some exampla#iustrate our main results.
Example5.1 Consider the following system
x, +3x, =17,
5x, + 7x, =19,
11x4 + 13x, = 23.

We can write this system in the form (1.1), where

13 B 17
A=(5 ?)EEM, x=(x1),b=(19).
11 13 : 23

Sincerank(A) =2 = n(< m = 3), then4 has full column rank (also, it has full rank) tiis case, we
use the form (4.1) or (4.2).

4 = (1 5 11 A4 = (14? 181

3 7 13/ 181 227) |4"Al=e608

If we use (4.1) then

_ Ay el by (44 e B+ (474) ek by
k)

1 4%

_ A" el B, + (A7) qa GlBg +1(4%4) pak By

T ]

. l4al
where
|(A%4) 4a’ b, = ‘; E;‘ (17) = —5372,
(a4 1a5lb, = |5 57| (19) = 2508,
(4 a)aslby = |15 50| (23) =3312,
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147 1
A*A) jafilb, = ‘ 17) = 4420,
|( ).;a.ll 1 181 3 (17)
|(4%4) ya%]b, = i;i ?‘(19) = 2356
147 11
4A),a5]by = | | (23) = —1840.
|(A"A)za50b, = 157 13/ (23)
Now,
xl — —5372—-2502+3312 _ _?5’
=08
. = 2470 +2356=-1240 =812
= &g

Remark 5.1 About example 5.lwe obtained the approximate solutiémuwrthermore, you can use the
form (4.2) and will get the same resulffie solution we obtained is the same solution abthusing the
method used in [4].

Example 5.2 Let us consider the system
2xy+3x;, —dxz =7,
X, — 2x, — bx; =3,
We can write this system in the form (1.1), where
2 3 —4 1 7
4= (1 ) —5)’ = ea)b - (3)

Sincerank(4) = 2 = m(< n = 3), then4 has full row rank (also, it has full rank), ingldase, we use
the form (4.3) to finck as following.

2 1
. - _ {29 16 o
A _(_34 :g) A4 _(15 30], |44°] = 614,

B LT - D - L e T g
1 laa®| !

_ 14a™)ag b, +H(AA )y [B
z laa®| !

_ 1(44") a0 b 444" jag by
= r

3 | aa®|

where

o e 21 _
(447 ailby = | 50| () =308,

A el = |29 16) oy _
(44 jz.al.lbz_‘ 2 1‘ (3)=-9,
P I
|(447) a3 |b, ‘16 30‘ (7) = 854

—
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oo 29 16

|(AA7), a3 by = ‘ 3 _2 (3) =—318,

[(44%) a3 by = ‘ 16 30 (7) = —280,
N 29 16

(4405 0b, = |7, 2| (3) =243

Hence
x, =049, x, = 0.87, x, = —0.85,
is the solution for the given system.
Example 5.3 Let us consider the system
Xy T 2% T 4x5 = 2,
2xy + 4x, + Bxy = 4
The coefficients matrix is

1 2 4
‘42245)'

Sincerank(A) =1 < min {m, n}, thend4 has not full rank. Itis a full rank factorizatioWe can write4
as

A=EC

with rank(4) = rank(B) = rank(C) = 1, where
b; 1
5= (b}i) - (zj’C =(fu € fx)=(1 2 4)

To find solution for the given system, we use terf (4.4), where

It cil|(a" 8 o), |t (ecy il |(8°B) b, |y

x —
1 lcc*|l8*El !
e, ;1| (8" B) b, b+l el |(5°8) b |b,

X, =
2 |cc®|| 55| !
. e, er (5 8) 8 bt lee ) |78 Lo b,
3= ]

lcc|5* 8

B*=(1 2), B°B=(5), |1B*Bl=5, (B*°B) 1 =1,

1
= (z),cc* = (21),lccl =21, (cC) =
4

Hence

Y. = DEO@+HDO@E _ 10
i (21)(5) 105"

—
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_ (@(0@+EE) _ 20

2 b

= (21)(5» 105

(a2 (2h+(ad(20(a) a0
3 (22)(5) 105"

6.CONCLUSIONS

In this study, we obtained the representationd/fBI of some matrices using the adjugate matrix.
Then we used these representations to get gereztaliramer rules. Finally, we used the generalized
Cramer rules to find the minimal least squares temig for the singular linear systems of algebraic
equations (1.1).
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